CFP last date
20 December 2024
Reseach Article

A Survey of Various Ant Colony Optimization based Routing Protocols for Mobile Ad hoc Networks

by Kanishka Raheja, Reenu Batra, Manoj Kapil
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 181 - Number 35
Year of Publication: 2019
Authors: Kanishka Raheja, Reenu Batra, Manoj Kapil
10.5120/ijca2019918313

Kanishka Raheja, Reenu Batra, Manoj Kapil . A Survey of Various Ant Colony Optimization based Routing Protocols for Mobile Ad hoc Networks. International Journal of Computer Applications. 181, 35 ( Jan 2019), 32-36. DOI=10.5120/ijca2019918313

@article{ 10.5120/ijca2019918313,
author = { Kanishka Raheja, Reenu Batra, Manoj Kapil },
title = { A Survey of Various Ant Colony Optimization based Routing Protocols for Mobile Ad hoc Networks },
journal = { International Journal of Computer Applications },
issue_date = { Jan 2019 },
volume = { 181 },
number = { 35 },
month = { Jan },
year = { 2019 },
issn = { 0975-8887 },
pages = { 32-36 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume181/number35/30261-2019918313/ },
doi = { 10.5120/ijca2019918313 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-07T01:08:15.444227+05:30
%A Kanishka Raheja
%A Reenu Batra
%A Manoj Kapil
%T A Survey of Various Ant Colony Optimization based Routing Protocols for Mobile Ad hoc Networks
%J International Journal of Computer Applications
%@ 0975-8887
%V 181
%N 35
%P 32-36
%D 2019
%I Foundation of Computer Science (FCS), NY, USA
Abstract

Routing in MANET (Mobile Ad hoc Network) is a challenging task because of the mobile nature of the nodes in a network and topology changes very often and developing effective routing protocols for MANET is also a highly challenging task. To fulfil the multiple routing requirements as low control overhead, low packet delay, high packet delivery rate and adapting effectively to network topology changes and so on, are the issues which are emerging. Amidst lots of problems which are found to be NP-hard in routing, new ways to find approximate solutions have to be investigated. A lot of attention was attracted by Swarm intelligence inspired algorithms which are based on the Ant Colony Optimization meta heuristic technique because they can offer optimized solutions ensuring low control overhead, robustness etc. and presents framework for approximating solutions to NP-hard problems. This paper includes 1) Introducing the ACO technique and its principles 2) Various ACO based routing protocols 3) summary and conclusion.

References
  1. K. A. Gupta, Harsh Sadawarti, K. A. Verma.2010 Performance analysis of AODV, DSR and TORA Routing Protocols. International Journal of Engineering and technology (IJET), ISSN: 1793-8236, Article No. 125, Vol.2 No. 2, April, pp. –Yaode
  2. F. Dressler and O. B. Akan.2010 .A survey on bio-inspired networking. Comput. Netw., vol. 54, no. 6, pp. 881_900
  3. G. Beni and J. Wang.1993. Swarm intelligence in cellular robotic systems. In Robots Biological Systems: Towards a New Bionics?. Berlin, Germany: Springer,, pp. 703_712, doi: https://doi.org/10.1007/978-3-642-58069-7_38.
  4. K. Kordon.2010.Swarm intelligence: The benefits of swarms. In Applying Computational Intelligence. Berlin, Germany: Springer, pp. 145_174, doi: https://doi.org/10.1007/978-3-540-69913-2_6.
  5. E. Bonabeau, M. Dorigo, and G. Theraulaz.1999 Swarm Intelligence: From Natural to Artifcial Systems. Oxford, U.K.: Oxford Univ. Press
  6. R. Poli, J. Kennedy, and T. Blackwell. 2010.Particle swarm optimization. Swarm Intell., vol. 1, no. 1, pp. 33_57, doi: https://doi.org/10.1007/s11721-007-0002-0.
  7. M. Dorigo.1992.Optimization, learning and natural algorithms. Ph.D. dissertation, Politecnico di Milano, Milan, Italy.
  8. C. S. Moreau, C. D. Bell, R. Vila, S. B. Archibald, and N. E. Pierce 2006.Phylogeny of the ants: Diversi_cation in the age of angiosperms. Science,vol. 312, no. 5770, pp. 101_104.
  9. G. F. Oster and E. O. Wilson.1978 Caste and Ecology in the Social Insects. Princeton, NJ, USA: Princeton Univ. Press.
  10. T. Flannery. 2011.Here on Earth: A Natural History of the Planet. New York, NY, USA: Grove.
  11. H. Zhang, X. Wang, P. Memarmoshrefi and D. Hogrefe.2017.A Survey of Ant Colony Optimization Based Routing Protocols for Mobile Ad Hoc Networks. In IEEE Access, vol. 5, pp. 24139-24161.
  12. F.Moyson and B. Manderick.1988. The Collective Behavior of Ants: An Example of Self-organization in Massive Parallelism, Vrije Univ. Brussel, Ixelles, Belgium.
  13. S. Goss, S. Aron, J.-L. Deneubourg, and J. M. Pasteels.1989.Self-organized shortcuts in the Argentine ant. Naturwissenschaften, vol. 76, no. 12,pp. 579_581
  14. M. Dorigo and T. Stützle.2004.Ant Colony Optimization. Cambridge, MA, USA: MIT Press.
  15. K. Anuj Gupta, K. Anil. Verma, and H. Sadawarti.2011.Analysis of various Swarm-based and Ant-based Algorithms. In Proc. Of International Conference on Advances in Computing and Artificial Intelligence (ACAI 2011), an ACM Chapter Event, Chitkara University, Punjab, 21-22 , pp – 39-43.
  16. G. Di Caro and M. Dorigo.1998.AntNet: Distributed stigmergetic control for communications networks,'' J. Artif. Intell. Res., vol. 9, pp. 317_365.
  17. M. Gunes, U. Sorges, and I. Bouazizi.2002.ARA-the ant-colony based routing algorithm for MANETs,'' in Proc. Int. Conf. Parallel Process. Workshops, pp. 79_85.
  18. J. S. Baras and H. Mehta.2003.A probabilistic emergent routing algorithm for mobile ad hoc networks. In Proc. Modeling Optim. Mobile, Ad Hoc Wireless Netw. (WiOpt), p. 10.
  19. C. Perkins, E. Belding-Royer, and S. Das.2003.Ad hoc on-demand distance vector (AODV) routing. IETF, Fremont, CA, USA,Tech. Rep. rfc3561. Accessed: Oct. 26, 2017. [Online]. Available:https://tools.ietf.org/html/rfc3561
  20. G. Di Caro, F. Ducatelle, and L. M. Gambardella.2005.AntHocNet: An adaptive nature-inspired algorithm for routing in mobile ad hoc networks. Eur.Trans. Telecommun., vol. 16, no. 5, pp. 443_455.
  21. S. K. Nivetha, R. Asokan and N. Senthilkumaran.2013.A swarm-based hybrid routing protocol to support multiple Quality of Service (QoS) metrics in mobile ad hoc networks, Fourth International Conference on Computing, Communications and Networking Technologies (ICCCNT), Tiruchengode, pp. 1-8
  22. E. Osagie, P. Thulasiraman, and R. K. Thulasiram.2008. PACONET: Improved ant colony optimization routing algorithm for mobile ad hoc networks. In Proc. 22nd Int. Conf. Adv. Inf. Netw. Appl. (AINA), pp. 204_211
  23. J. Wang, E. Osagie, P. Thulasiraman, and R. K. Thulasiram.2009. HOPNET: A hybrid ant colony optimization routing algorithm for mobile ad hoc network,'' Ad Hoc Netw., vol. 7, no. 4, pp. 690_705.
  24. .
Index Terms

Computer Science
Information Sciences

Keywords

Aco Manet Si Fant Bant