CFP last date
20 December 2024
Reseach Article

Applying Machine Learning to Imbalanced Sensor Data

by Sachin Mallya, Ajeet Kumar Rai
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 181 - Number 34
Year of Publication: 2018
Authors: Sachin Mallya, Ajeet Kumar Rai
10.5120/ijca2018918262

Sachin Mallya, Ajeet Kumar Rai . Applying Machine Learning to Imbalanced Sensor Data. International Journal of Computer Applications. 181, 34 ( Dec 2018), 30-35. DOI=10.5120/ijca2018918262

@article{ 10.5120/ijca2018918262,
author = { Sachin Mallya, Ajeet Kumar Rai },
title = { Applying Machine Learning to Imbalanced Sensor Data },
journal = { International Journal of Computer Applications },
issue_date = { Dec 2018 },
volume = { 181 },
number = { 34 },
month = { Dec },
year = { 2018 },
issn = { 0975-8887 },
pages = { 30-35 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume181/number34/30212-2018918262/ },
doi = { 10.5120/ijca2018918262 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-07T01:08:08.825724+05:30
%A Sachin Mallya
%A Ajeet Kumar Rai
%T Applying Machine Learning to Imbalanced Sensor Data
%J International Journal of Computer Applications
%@ 0975-8887
%V 181
%N 34
%P 30-35
%D 2018
%I Foundation of Computer Science (FCS), NY, USA
Abstract

In this paper, various statistical methods useful in analyzing data generated by power stations are presented. Power stations like hydroelectric, nuclear or thermal etc. have a number of machines that work together and produce energy. Data collected from the sensors of these machines is used for measuring efficiency and performance of particular machines.

References
  1. Practical Guide to deal with Imbalanced Classification Problems in R. Retrieved from https://www.analyticsvidhya.com/blog/2016/03/practical-guide-deal-imbalanced-classification-problems/
  2. Will, Todd (1999)”Introduction to the Singular Value Decomposition” Davidson College. www.davidson.edu/academic/math/will/svd/index.html
  3. DECISION TREE IN R: STEP BY STEP GUIDE. Retrieved from https://www.listendata.com/2015/04/decision-tree-in-r.html
  4. RANDOM FOREST IN R: STEP BY STEP TUTORIAL Retrieved from https://www.listendata.com/2014/11/random-forest-with-r.html
  5. I. T. Joliffe, Principal Component Analysis, Springer, New York, NY, USA, 2002.
  6. Cox D.R., Hinkley D.V. (1974) Theoretical Statistics, Chapman & Hall, p49, p209
  7. Freund, J.E. (1962) Mathematical Statistics Prentice Hall, Englewood Cliffs, NJ. (See pp. 227–228.)
  8. Bryman, A., & Cramer, D. (1994). Quantitative data analysis for social scientists (rev. Taylor & Frances/Routledge.
  9. Bradley, A.P., 1997. The use of the area under the ROC curve in the evaluation of machine learning algorithms. Pattern Recogn. 30 (7), 1145–1159.
  10. Chawla, Nitesh V. (2010) Data Mining for Imbalanced Datasets: An Overview doi:10.1007/978-0-387-09823-4_45 In: Maimon, Oded; Rokach, Lior (Eds) Data Mining and Knowledge Discovery Handbook, Springer ISBN 978-0-387-09823-4 (pages 875–886)
  11. Macskassy, S., Provost, F., 2004. Confidence bands for ROC curves: Methods and an empirical study. In: Proc. First Workshop on ROC Analysis in AI (ROCAI-04).
  12. Devinder Kaur, Rajiv Bedi and Dr. Sunil Kumar Gupta, “Implementation of Enhanced Decision Tree Algorithm on Traffic Accident Analysis”, (IJSRT), ISSN: 2379- 3686, 15th September 2015.
  13. M.-J. Zhao, N. Edakunni, A. Pocock, and G. Brown. Beyond Fano’s inequality: bounds on the optimal F-score, BER, and cost-sensitive risk and their implications. The Journal of Machine Learning Research, 14(1):1033–1090.
Index Terms

Computer Science
Information Sciences

Keywords

Classification Machine Learning Confidence Interval Imbalanced data SMOTE Cost Matrix ROSE Precision AUC.