CFP last date
20 January 2025
Reseach Article

A Novel Kernel Clustering Algorithm

by Wesam M. Ashour
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 181 - Number 29
Year of Publication: 2018
Authors: Wesam M. Ashour
10.5120/ijca2018918148

Wesam M. Ashour . A Novel Kernel Clustering Algorithm. International Journal of Computer Applications. 181, 29 ( Nov 2018), 32-36. DOI=10.5120/ijca2018918148

@article{ 10.5120/ijca2018918148,
author = { Wesam M. Ashour },
title = { A Novel Kernel Clustering Algorithm },
journal = { International Journal of Computer Applications },
issue_date = { Nov 2018 },
volume = { 181 },
number = { 29 },
month = { Nov },
year = { 2018 },
issn = { 0975-8887 },
pages = { 32-36 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume181/number29/30127-2018918148/ },
doi = { 10.5120/ijca2018918148 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-07T01:07:41.542225+05:30
%A Wesam M. Ashour
%T A Novel Kernel Clustering Algorithm
%J International Journal of Computer Applications
%@ 0975-8887
%V 181
%N 29
%P 32-36
%D 2018
%I Foundation of Computer Science (FCS), NY, USA
Abstract

K-means algorithm is one of the most famous clustering algorithms in data mining due to its simplicity. Kernel K-means is an extension of K-means to cluster nonlinear separable data. However, it still has some limitations like sensitivity and convergence to the local optima. In this paper, we show how to implement a new novel kernel-clustering algorithm that is robust and converges to the global solution. We show using artificial and real data sets that the proposed kernel algorithm performs better than the standard kernel K-means algorithm.

References
  1. Jain, A.K., M.N. Murty and P.J. Flynn, 1999. Data clustering: A review. ACM Comput. Surv., 31: 264-323.
  2. Xindong, Wu and et. al 2008. Top 10 Algorithms in Data Mining. Journal of Knowledge and Information Systems, 14(1):1-37, DOI: 10.1007/s10115-007-0114-2.
  3. Plant, C. ; Zherdin, A. ; Sorg, C. ; Meyer-Baese, A. ; Wohlschlager, A.M., 2014, Mining Interaction Patterns among Brain Regions by Clustering, IEEE Transactions on Knowledge and Data Engineering, 26(9): 2237-2249, DOI: 10.1109/TKDE.2013.61.
  4. Shuo Chen and Chengjun Liu, 2014, Clustering-Based Discriminant Analysis for Eye Detection, IEEE Transactions on Image Processing, 23(4):1629-1638, DOI: 10.1109/TIP.2013.2294548.
  5. Guojun Gan, Chaoqun Ma, and Jianhong Wu, 2007. Data Clustering: Theory, Algorithms, and Applications, ISBN: 978-0-898716-23-8, ASA-SIAM.
  6. Celebi, M., H Kingravi, and P. A. Vela, 2013, “A comparative study of efficient initialization methods for the k-means clustering algorithm.” Expert Syst. Appl., vol. 40:200–210.
  7. Cao, F. Y., Liang, J. Y. and Jiang, G., 2009. An initialization method for the K-means algorithm using neighborhood model. Computers and Mathematics with applications, 58(3): 474-483.
  8. Likas, A., Vlassis,, M. and Verbeek, J., 2003, “The global k-means clustering algorithm,” Pattern Recognition, vol. 36, pp. 451–461.
  9. Arai, Koheri and Ridho, Ali, 2007. Hierarchical K-means, an algorithm for Centroids initialization for K-means, Saga University, 36(1): 25-31.
  10. Ashour W., Fyfe, C., 2008, Local vs global interactions in clustering algorithms: advances over K-means, International Journal of Knowledge-based and Intelligent Engineering Systems (KES), 12(2): 83-99, 2008. ISSN 1327-2314.
  11. Khan, S., Ahmad, A., 2004, Cluster center initialization algorithm for K-means clustering. Pattern Recognition Letters, vol. 25, pp.1293-1302.
  12. Arthur, D., and Vassilvitskii, S., 2006. K-means++: The advantages of careful seeding. In Bay Area Theory Symposium,BATS06. http://www.stanford.edu/~sergeiv/papers/kMeansPP-soda.pdf.
  13. Zhang, B., Hsu, M., and Dayal, U., 1999. K-harmonic means - a data clustering algorithm. Technical Report HPL-1999-124, HP Laboratories, Palo Alto.
  14. B. Zhang, 2001. Generalised k-harmonic means- dynamic weighting of data in unsupervised learning. In First SIAM International Conference on Data Mining. http://www.siam.org/meetings/sdm01/pdf/sdm01_06.pdf.
  15. Angelov, P., 2004. An approach for fuzzy rule-base adaptation using on-line clustering. International Journal of Approximate Reasoning, 35(3):275–289.
  16. Dhillon, S., Guan, Y., and Kulis, B, 2004. Kernel k-means, spectral clustering and normalized cuts. In Proc. ACM SIGKDD Intl Conf. Knowledge Discovery and Data Mining, Seattle, W.
  17. Girolami, M.., 2002, Mercer kernel based clustering in feature space IEEE Transactions on Neural Networks, 13(3):780- 784.
  18. Burges C. 1998. A tutorial on support vector machines for pattern recognition. Data Mining and Knowledge Discovery, 2(2):121–167.
  19. Suykens, J. A. and J. Vandewalle, J. 1999. Least squares support vector machine classifiers. Neural Processing Letters, 9(3):293–300.
  20. Ashour, W., Wu, Y. and Fyfe, C, 2009. Non-standard parameter adaptation for exploratory data analysis, Springer.
Index Terms

Computer Science
Information Sciences

Keywords

K-means Kernel K-means Clustering global optima.