CFP last date
20 January 2025
Reseach Article

Adapted Regulation Level’s Flipped Classroom using Educational Data-mining

by Mohamed Mimis, Youssef Es-saady, Mohamed El Hajji, Abdellah Ouled Guejdi
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 181 - Number 24
Year of Publication: 2018
Authors: Mohamed Mimis, Youssef Es-saady, Mohamed El Hajji, Abdellah Ouled Guejdi
10.5120/ijca2018918033

Mohamed Mimis, Youssef Es-saady, Mohamed El Hajji, Abdellah Ouled Guejdi . Adapted Regulation Level’s Flipped Classroom using Educational Data-mining. International Journal of Computer Applications. 181, 24 ( Oct 2018), 28-32. DOI=10.5120/ijca2018918033

@article{ 10.5120/ijca2018918033,
author = { Mohamed Mimis, Youssef Es-saady, Mohamed El Hajji, Abdellah Ouled Guejdi },
title = { Adapted Regulation Level’s Flipped Classroom using Educational Data-mining },
journal = { International Journal of Computer Applications },
issue_date = { Oct 2018 },
volume = { 181 },
number = { 24 },
month = { Oct },
year = { 2018 },
issn = { 0975-8887 },
pages = { 28-32 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume181/number24/30036-2018918033/ },
doi = { 10.5120/ijca2018918033 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-07T01:06:58.673155+05:30
%A Mohamed Mimis
%A Youssef Es-saady
%A Mohamed El Hajji
%A Abdellah Ouled Guejdi
%T Adapted Regulation Level’s Flipped Classroom using Educational Data-mining
%J International Journal of Computer Applications
%@ 0975-8887
%V 181
%N 24
%P 28-32
%D 2018
%I Foundation of Computer Science (FCS), NY, USA
Abstract

Adaptation and individualization of learning is a major challenge when using flipped class as a teaching method. In this paper, we propose a recommendation system for flipped classroom to individualize learning in the classroom based on Data Mining algorithms. This system allows the teacher to predict a classification of learners before administering the tasks to be accomplished and the adapted teaching resources, using attributes related to the activity logs on the e-learning platform, to the online evaluations (Quiz) and to demographic data. The results show that the use of this model as a learning strategy optimizes the time of learning and improves the learner’s performance.

References
  1. Bowman, M., Debray, S. K., and Peterson, L. L. 1993. Reasoning about naming systems.
  2. Ding, W. and Marchionini, G. 1997 A Study on Video Browsing Strategies. Technical Report. University of Maryland at College Park.
  3. Fröhlich, B. and Plate, J. 2000. The cubic mouse: a new device for three-dimensional input. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems
  4. Tavel, P. 2007 Modeling and Simulation Design. AK Peters Ltd.
  5. Sannella, M. J. 1994 Constraint Satisfaction and Debugging for Interactive User Interfaces. Doctoral Thesis. UMI Order Number: UMI Order No. GAX95-09398., University of Washington.
  6. Forman, G. 2003. An extensive empirical study of feature selection metrics for text classification. J. Mach. Learn. Res. 3 (Mar. 2003), 1289-1305.
  7. Brown, L. D., Hua, H., and Gao, C. 2003. A widget framework for augmented interaction in SCAPE.
  8. Y.T. Yu, M.F. Lau, "A comparison of MC/DC, MUMCUT and several other coverage criteria for logical decisions", Journal of Systems and Software, 2005, in press.
  9. Spector, A. Z. 1989. Achieving application requirements. In Distributed Systems, S. Mullender.
  10. El Hajji, M., et al., New Blended Learning Strategy Based on Flipped-Learning for Vocational Work-Linked Training. Journal of Education and Practice, 2016. 7(36): p. 126-130.
  11. Plasencia, A. and N. Navas, MOOCs, the flipped classroom, and Khan Academy practices: The implications of augmented learning, in Innovation and Teaching Technologies. 2014, Springer. p. 1-10.
  12. Fine, J. and C. Vermandele, La statistique dans le secondaire et retour sur les MOOCs. Statistique et Enseignement, 2014. 5(1): p. 1-3.
  13. Alvarez, B., Flipping the classroom: Homework in class, lessons at home. The Education Digest, 2012. 77(8): p. 18.
  14. Fulton, K., Upside down and inside out: Flip your classroom to improve student learning. Learning & Leading with Technology, 2012. 39(8): p. 12-17.
  15. Baker, R., Data mining for education. International encyclopedia of education, 2010. 7(3): p. 112-118.
  16. Peraya, D., F. Lombard, and M. Bétrancourt, De la culture du paradoxe à la cohérence pédagogique. Bilan de 10 années de formation à l’intégration des TICE pour les futurs enseignants du primaire à Genève. Formation et pratiques d'enseignement en question, 2008(7) : p. 11-28.
  17. Laveault, D. La régulation des apprentissages et la motivation scolaire. in Document présenté au Ministère de l’Éducation, du Loisir et du Sport.[En ligne] www. mels. gouv. qc. ca/REFORME/conf/conflaveault. pdf (Consulté le 26 janvier 2009). 2000.
  18. Quinlan, J.R., C4. 5: programs for machine learning. 2014: Elsevier.
  19. Frank, E., et al., Naive Bayes for regression. Machine Learning, 2000. 41(1): p. 5-25.
  20. Vandamme, J.P., N. Meskens, and J.F. Superby, Predicting academic performance by data mining methods. Education Economics, 2007. 15(4): p. 405-419.
  21. Baker, R. S. and K. Yacef (2009). "The state of educational data mining in 2009: A review and future visions." JEDM-Journal of Educational Data Mining 1(1): 3-17.
  22. Breiman, L., J. Friedman, C. J. Stone and R. A. Olshen (1984). Classification and regression trees, CRC press.
  23. Breuel, T. and F. Shafait (2010). AutoMLP: Simple, effective, fully automated learning rate and size adjustment. The Learning Workshop, Utah.
  24. Brijain, M., R. Patel, M. Kaushik and K. Rana (2014). "A survey on decision tree algorithm for classification."
  25. Castro, F., A. Vellido, À. Nebot and F. Mugica (2007). "Applying data mining techniques to e-learning problems." Evolution of teaching and learning paradigms in intelligent environment: 183-221.
  26. Etchells, T. A., À. Nebot, A. Vellido, P. J. Lisboa and F. Mugica (2006). Learning what is important: feature selection and rule extraction in a virtual course. ESANN.
  27. Frank, E., L. Trigg, G. Holmes and I. H. Witten (2000). "Naive Bayes for regression." Machine Learning 41(1): 5-25.
  28. Quinlan, J. R. (1986). "Induction of decision trees." Machine learning 1(1): 81-106.
  29. Quinlan, J. R. (2014). C4. 5: programs for machine learning, Elsevier.
  30. Romero, C. and S. Ventura (2013). "Data mining in education." Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery 3(1): 12-27.
  31. Witten, I. H., E. Frank, M. A. Hall and C. J. Pal (2000). Data Mining: Practical machine learning tools and techniques, Morgan Kaufmann.
  32. Y. Es-Saady, A. Rachidi, M. El Yassa, D. Mammass, Amazigh Handwritten Character Recognition based on Horizontal and Vertical Centerline of Character, International Journal of Advanced Science and Technology, vol. 33, pp. 33-50, August, 2011.
Index Terms

Computer Science
Information Sciences

Keywords

Educational data mining flipped classroom regulation of learning adaptation hybrid learning.