CFP last date
20 January 2025
Reseach Article

Classification of Cancerous Skin using Artificial Neural Network Classifier

by Mohammad Zakareya, Mohammad Badrul Alam Miah, Md. Arafat Ullah
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 181 - Number 22
Year of Publication: 2018
Authors: Mohammad Zakareya, Mohammad Badrul Alam Miah, Md. Arafat Ullah
10.5120/ijca2018917939

Mohammad Zakareya, Mohammad Badrul Alam Miah, Md. Arafat Ullah . Classification of Cancerous Skin using Artificial Neural Network Classifier. International Journal of Computer Applications. 181, 22 ( Oct 2018), 21-25. DOI=10.5120/ijca2018917939

@article{ 10.5120/ijca2018917939,
author = { Mohammad Zakareya, Mohammad Badrul Alam Miah, Md. Arafat Ullah },
title = { Classification of Cancerous Skin using Artificial Neural Network Classifier },
journal = { International Journal of Computer Applications },
issue_date = { Oct 2018 },
volume = { 181 },
number = { 22 },
month = { Oct },
year = { 2018 },
issn = { 0975-8887 },
pages = { 21-25 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume181/number22/30017-2018917939/ },
doi = { 10.5120/ijca2018917939 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-07T01:06:42.238322+05:30
%A Mohammad Zakareya
%A Mohammad Badrul Alam Miah
%A Md. Arafat Ullah
%T Classification of Cancerous Skin using Artificial Neural Network Classifier
%J International Journal of Computer Applications
%@ 0975-8887
%V 181
%N 22
%P 21-25
%D 2018
%I Foundation of Computer Science (FCS), NY, USA
Abstract

Cancer is one of the most hazardous diseases that cause death. However, if detected early this medical condition is not very prohibitive to defeat. The skin cancer is the anomalous growth of skin cells most often promotes on body apparent to the sunlight but can occur anywhere on the body. Skin cancer is the most common type of malignant tumor in both men and women. So, for the detection of cancer, image processing approaches play a paramount role. There are mainly four steps involved in the detection of skin cancer that are: Preprocessing, segmentation, feature extraction, and classification. The Neural network is used to classify images. It is an easy system rather than taking a biopsy from a doctor. The system consumes less time and gets the better result than the ordinary system.

References
  1. Hanahan, D., & Weinberg, R. A. (2011). Hallmarks of cancer: the next generation. cell, 144(5), 646-674.
  2. Bhuiyan, M. A. H., Ibrahim Azad, M., & Uddin, K. (2013). Image processing for skin cancer features extraction. International Journal of Scientific & Engineering Research, 4(2), 1-6.
  3. Menon, U., & Jacobs, I. J. (2000). Recent developments in ovarian cancer screening. Current Opinion in Obstetrics and Gynecology, 12(1), 39-42.
  4. Kopf, A. W., Salopek, T. G., Slade, J., Marghoob, A. A., & Bart, R. S. (1995). Approaches of cutaneous examination for the detection of skin cancer. Cancer, 75(S2), 684-690.
  5. Farooq, M. A., Azhar, M. A. M., & Raza, R. H. (2016, October). Automatic Lesion Detection System (ALDS) for Skin Cancer Classification Using SVM and Neural Classifiers. In Bioinformatics and Bioengineering (BIBE), 2016 IEEE 16th International Conference on (pp. 301-308). IEEE.
  6. Saha, S., & Gupta, R. (2013). An Automated Skin Lesion Diagnosis by using Image Processing Approaches. International Journal on Recent and Innovation Trends in Computing and Communication, 2(5), 1081-1085.
  7. Zalaudek, I., Lallas, A., Moscarella, E., Longo, C., Soyer, H. P., & Argenziano, G. (2013). The dermatologist’s stethoscope—traditional and new applications of dermoscopy. Dermatology practical & conceptual, 3(2), 67.
  8. Lu, C., Mahmood, M., Jha, N., & Mandal, M. (2013). Automated segmentation of the melanocytes in skin histopathological images. IEEE journal of biomedical and health informatics, 17(2), 284-296.
  9. Maurya, R., Singh, S. K., Maurya, A. K., & Kumar, A. (2014, March). GLCM and Multi Class Support vector machine based automated skin cancer classification. In Computing for Sustainable Global Development (INDIACom), 2014 International Conference on (pp. 444-447). IEEE.
  10. Messadi, M., Cherifi, H., & Bessaid, A. (2014). Segmentation and ABCD rule extraction for skin tumors classification. Journal of Convergence Information Technology, 9(2), 21.
  11. Raja, C. V. J., & Jeyaprakash, M. (2014). Skin Disease Diagnosis Using Texture Analysis. Sethu Institute of Technology and Chettinad College of Engg & Tech, India, International Journal of Advanced Research in Computer Scienceand Software Engineering India, 4(1).
  12. Goel, R., & Singh, S. (2015). Skin Cancer Detection using GLCM Matrix Analysis and Back Propagation Neural Network Classifier. International Journal of Computer Applications, 112(9).
  13. Al-Amin, M., Alam, M. B., & Mia, M. R. (2015). Detection of Cancerous and Non-cancerous Skin by using GLCM Matrix and Neural Network Classifier. International Journal of Computer Applications, 132(8), 44.
  14. Ramteke, N. S., & Jain, S. V. (2013). Analysis of Skin Cancer Using Fuzzy and Wavelet Technique–Review & Proposed New Algorithm. International Journal of Engineering Trends and Technology (IJETT), 4(6), 2555-2566.
  15. Rani, N., Nalam, M., & Mohan, A. (2014). Detection of Skin Cancer Using Artificial Neural Network. International Journal of Innovations & Advancement in Computer Science IJIACS, 2(1).
  16. Smaoui, N., & Bessassi, S. (2013). A developed system for melanoma diagnosis. International Journal of Computer Vision and Signal Processing, 3(1), 10-17.
  17. Sethumadhavan, G., & Sankaran, S. (2009, June). Border detection and cancer propagation on spectral bands of malignant melanoma using six sigma threshold. In Computer and Information Science, 2009. ICIS 2009. Eighth IEEE/ACIS International Conference on (pp. 586-592). IEEE.
  18. Sheha, M. A., Mabrouk, M. S., & Sharawy, A. (2012). Automatic detection of melanoma skin cancer using texture analysis. International Journal of Computer Applications, 42(20), 22-26.
Index Terms

Computer Science
Information Sciences

Keywords

Skin Cancer Feature extraction Neural Network