CFP last date
20 December 2024
Reseach Article

On Improving SPARQL Information Retrieval System for Semantic Internet of Things Applications

by Abdulrahman Jalal, Sofiane Ouni, Karim Kamoun, Bassam A. Zafar
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 181 - Number 2
Year of Publication: 2018
Authors: Abdulrahman Jalal, Sofiane Ouni, Karim Kamoun, Bassam A. Zafar
10.5120/ijca2018917421

Abdulrahman Jalal, Sofiane Ouni, Karim Kamoun, Bassam A. Zafar . On Improving SPARQL Information Retrieval System for Semantic Internet of Things Applications. International Journal of Computer Applications. 181, 2 ( Jul 2018), 30-37. DOI=10.5120/ijca2018917421

@article{ 10.5120/ijca2018917421,
author = { Abdulrahman Jalal, Sofiane Ouni, Karim Kamoun, Bassam A. Zafar },
title = { On Improving SPARQL Information Retrieval System for Semantic Internet of Things Applications },
journal = { International Journal of Computer Applications },
issue_date = { Jul 2018 },
volume = { 181 },
number = { 2 },
month = { Jul },
year = { 2018 },
issn = { 0975-8887 },
pages = { 30-37 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume181/number2/29691-2018917421/ },
doi = { 10.5120/ijca2018917421 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-07T01:04:48.430969+05:30
%A Abdulrahman Jalal
%A Sofiane Ouni
%A Karim Kamoun
%A Bassam A. Zafar
%T On Improving SPARQL Information Retrieval System for Semantic Internet of Things Applications
%J International Journal of Computer Applications
%@ 0975-8887
%V 181
%N 2
%P 30-37
%D 2018
%I Foundation of Computer Science (FCS), NY, USA
Abstract

Due to the huge volume of information and knowledge derived from IoT devices, it will be hard to explore all knowledge coming from these devices. The semantic ontology-based descriptions with the semantic web are one of the most interesting ways to extract the required knowledge. However, the information retrieval typically made by the SPARQL querying language stills hard to write correct queries from what the users need as knowledge to extract. It needs a deep knowledge of the semantic information system structure. In this paper, we have developed a new correction and relaxation approach based on structural semantic similarity measure to overcome the semantic errors in SPARQL queries. This approach is applied to semantic information systems using OWL and RDF ontologies which are related to IoT applications. To achieve the efficiency of our proposal, we have developed a SPARQL querying tools. According to the queries made on IoT applications, our approach performs best results regarding the precision of the answer to these queries.

References
  1. M. Hung, “Leading the IoT, Gartner Insights on How to Lead in a Connected World,” Gart. Res., pp. 1–29, 2017.
  2. J. Munir, “State-of-the-art of Internet of Things ontologies,” Tech. Univ. Berlin, 2016.
  3. P.Wongthontham and B. Abu-Salih, “Ontologybased Approach for Semantic Data Extraction from Social Big Data: State-of-the-art and Research Directions,” Curtin Univ., no. Ibm 2015, pp. 1–40, 2018.
  4. A. K. B, Z. Jan, A. Zappa, and M. Serrano, “Overcoming the Heterogeneity in the Internet of Things for Smart Cities,” insight-centre, vol. 10218, pp. 20–35, 2017.
  5. C. Perera, R. Ranjan, L. Wang, S. U. Khan, and A. Y. Zomaya, “Big Data Privacy in the Internet of Things Era,” IT Prof., vol. 17, no. 3, pp. 32–39, 2014.
  6. A. Bhadani and D. Jothimani, “Big Data: Challenges, Opportunities and Realities,” Eff. Big Data Manag. Oppor. Implement, pp. 1–24, 2016.
  7. M. Nguyen, M. Lee, S. Oh, and G. Fox, “SPARQL Query Optimization for Structural Indexed RDF Data,” Grids.Ucs.Indiana.Edu, 2014.
  8. Michael Compton et al, “The SSN Ontology of the W3C Semantic Sensor Network Incubator Group”, Journal of Web Semantics, 2012.
  9. A. K. B, Z. Jan, A. Zappa, and M. Serrano, “Interoperability and Open-Source Solutions for the Internet of Things,” insight-centre, vol. 10218, pp. 20–35, 2017.
  10. M. Nguyen, M. Lee, S. Oh, and G. Fox, “SPARQL Query Optimization for Structural Indexed RDF Data,” Grids.Ucs.Indiana.Edu, 2014.
  11. A. P. Kumar, A. Kumar, and V. N. Kumar, “A Comprehensive Comparative study of SPARQL and SQL,” Int. J. Comput. Sci. Inf. Technol., vol. 2, no. 4, pp. 1706–1710, 2011.
  12. P. Resnik, “Using Information Content to Evaluate Semantic Similarity in a Taxonomy,” Proc. ACL, vol. 1, 1995.
  13. G. Varelas, E. Voutsakis, P. Raftopoulou, E. G. M. Petrakis, and E. E. Milios, “Semantic similarity methods in wordNet and their application to information retrieval on the web,” Proc. seventh ACM Int. Work. Web Inf. data Manag. WIDM 05, pp. 10–16, 2005.
  14. A. Hliaoutakis, G. Varelas, E. Voutsakis, E. G. M. Petrakis, and E. Milios, “Information Retrieval by Semantic Similarity,” Int. J. Semant. Web Inf. Syst., 2006.
  15. K. Çelik, “Comprehensive Analysis Of Using WordNet, Part-of-Speechtagging, and Word Sense Disambiguation in text Categorization” Comput. Eng. Bah ̧ce ̧sehir Univ., 2009.
  16. Blanchard, E., Harzallah, M., Kuntz, P.: A generic framework for comparing semantic similarities on a subsumption hierarchy. In proceedings of 18th European Conference on ArtificialIntelligence (ECAI), pp. 20-24, Patrace, Greece 2008.
  17. Blanchard, E., Kuntz, P., Harzallah, M., Briand, H.: A tree-based similarity for evaluating concept proximities in an ontology, in Proceeding of 10th Conf. Int. Federation Classification Soc., pp. 3–11. Springer, 2006.
  18. Kamoun, K.,Ben Yahia, S., : Information content similarity measure to assess stability during ontology enrichment. International Review on Computer and Software (IRECOS), Vol.7, N. 3, Mai 2012.
  19. R. Mihalcea, C. Corley, and C. Strapparava, “Corpus-based and knowledge-based measures of text semantic similarity,” Proc. 21st Natl. Conf. Artif. Intell., vol. 1, pp. 775–780, 2006.
  20. S. Harispe, S. Ranwez, S. Janaqi, and J. Montmain, “Semantic Similarity from Natural Language and Ontology Analysis,” cs.AI, 2017.
  21. A. Hliaoutakis, “Semantic Similarity Measures in MeSH Ontology and their application to Information Retrieval on Medline,” Interface, pp. 1–79, 2005.
  22. A. M. Collins and E. F. Loftus, “A spreading-activation theory of semantic processing,” Psychol. Rev., vol. 82, no. 6, pp. 407–428, 1975.
  23. V. A. A. Ayala, M. Przyjaciel-Zablocki, T. Hornung, A. Schätzle, and G. Lausen, “Extending SPARQL for Recommendations,” Proc. Semant. Web Inf. Manag. Semant. Web Inf. Manag., no. JUNE, pp. 1–8, 2014.
  24. G. Fokou, S. Jean, A. Hadjali, and M. Baron, “QaRS: A user-friendly graphical tool for semantic query design and relaxation,” EDBT 2015 - 18th Int. Conf. Extending Database Technol. Proc., pp. 553–556, 2015.
  25. Miyuru Dayarathna, Comparing 11 IoT Development Platforms; An easy-to-read table comparing the various features of several popular IoT software platforms, 2016.
  26. P. Barceló, L. Libkin, and J. L. Reutter, “Querying graph patterns,” Proc. 30th ACM SIGMOD-SIGACT-SIGART Symp. Princ. Database Syst., pp. 199–210, 2011.
  27. K. Kamoun and S. Ben Yahia, “Stability Assess Based on Enhanced Information Content Similarity Measure for Ontology Enrichment,” in Model and Data Engineering, 2014, pp. 146–153.
  28. J. Ferlež and M. Gams, “Shortest-path semantic distance measure in WordNet v2.0,” Inform., vol. 28, no. 4, pp. 381–386, 2004.
  29. E. Blanchard, M. Harzallah, and P. Kuntz, “A generic framework for comparing semantic similarities on a subsumption hierarchy,” 18th Eur. Conf. Artif. Intell., pp. 20–24, 2008.
  30. T. Slimani, “Description and Evaluation of Semantic Similarity Measures Approaches,” Int. J. Comput. Appl., vol. 80, no. 10, pp. 25–33, 2013.
  31. P.Neirotti, A.DeMarco, A.Corinna, “Current trends in Smart City initiatives: Some stylised facts”, Cities, Elsevier, Volume 38, Pages 25-36, 2014.
  32. H. Huang, C. Liu, and X. Zhou, “Approximating query answering on RDF databases,” World Wide Web, vol. 15, no. 1, pp. 89–114, 2012.
Index Terms

Computer Science
Information Sciences

Keywords

Ontology Garden Smart Park Sensor