CFP last date
20 December 2024
Reseach Article

On the Alpha-Power Inverse Weibull Distribution

by Dina A. Ramadan, Walaa Magdy A.
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 181 - Number 11
Year of Publication: 2018
Authors: Dina A. Ramadan, Walaa Magdy A.
10.5120/ijca2018917657

Dina A. Ramadan, Walaa Magdy A. . On the Alpha-Power Inverse Weibull Distribution. International Journal of Computer Applications. 181, 11 ( Aug 2018), 6-12. DOI=10.5120/ijca2018917657

@article{ 10.5120/ijca2018917657,
author = { Dina A. Ramadan, Walaa Magdy A. },
title = { On the Alpha-Power Inverse Weibull Distribution },
journal = { International Journal of Computer Applications },
issue_date = { Aug 2018 },
volume = { 181 },
number = { 11 },
month = { Aug },
year = { 2018 },
issn = { 0975-8887 },
pages = { 6-12 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume181/number11/29814-2018917657/ },
doi = { 10.5120/ijca2018917657 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-07T01:05:40.092632+05:30
%A Dina A. Ramadan
%A Walaa Magdy A.
%T On the Alpha-Power Inverse Weibull Distribution
%J International Journal of Computer Applications
%@ 0975-8887
%V 181
%N 11
%P 6-12
%D 2018
%I Foundation of Computer Science (FCS), NY, USA
Abstract

A new method for adding parameters to a well-established distribution to obtain more flexible new families of distributions is applied to the inverse Weibull distribution (IWD). This method is known by the Alpha-Power transformation (APT) and introduced by Mahdavi and Kundu [9]. The statistical and reliability properties of the proposed models are studied. The estimation of the model parameters by maximum likelihood and the observed information matrix are also discussed. The extended model is applied on a real data and the results are given and compared to other models.

References
  1. Abbas, K. D. 2017. A new method for generating distributions with an application to exponential distribution." s.l, s.n, 46, 1-25.
  2. Abdelrahman, N. S. and El-Bassiouny, A.H. 2017, On the alpha-power exponential weibull distribution, The 2nd National of Mathematics and Its Applications (NCMA17), 1-18.
  3. Arnold, B. C. N. B. H. N. 2008. A .first course in order statistics .John Wiley and Sons, New York, 54, 9-12.
  4. Bain, L.J. 1974, Analysis for the linear failure-rate life-testing distribution, New York, 13, 551-559.
  5. Bjerkedal, T. 1960. Acquisition of resistance in guinea pigs infected with different doses of virulent tubercle bacilli". American Journal of Epidemiology, 72, 130-148.
  6. Chen, G. and Balakrishnan, C. 1995, A general purpose approximate goodness-of-.t test, Journal of Quality Technolog, 27, 154.161.
  7. Corderio, M.G. and Lemonte, JA. 2013, On the Marshal Olkin extended weibull distribution, State, 54, 333-353
  8. Lawless, J. F. 2003, Statistical models and methods for lifetime data, John Wiley and Sons, 362, 8-14 New York.
  9. Mahdavi, A and Kundu, D. 2015, A new method for generating distributions with an application to exponential distribution, Communications in Statistics-Theory and Methods, 46(13), 6543-6557.
  10. Nassar, M and Abo-Kasem, O. E. 2017, Estimation of the inverse Weibull parameters under adaptive type-II progressive hybrid censoring scheme, Journal of Computational and Applied Mathematics, 315, 228-239.
  11. Sarhan, A. M and Apaloo, J. 2013. Exponentiated modified weibull extension distribution. Reliability Engineering and System Safety, 112, 137-144.
Index Terms

Computer Science
Information Sciences

Keywords

Weibull distribution inverse Weibull distribution maximum-likelihood estimation survival function fisher information matrix order statistic.