CFP last date
20 December 2024
Reseach Article

A Fast Interest Points Feature Descriptors Algorithm for Mobile Image Retrieval Applications

by Hebat-Allah Saber Ibrahim, M. A. Abdou, Ragab Omar Abdelrahman
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 180 - Number 9
Year of Publication: 2018
Authors: Hebat-Allah Saber Ibrahim, M. A. Abdou, Ragab Omar Abdelrahman
10.5120/ijca2018916149

Hebat-Allah Saber Ibrahim, M. A. Abdou, Ragab Omar Abdelrahman . A Fast Interest Points Feature Descriptors Algorithm for Mobile Image Retrieval Applications. International Journal of Computer Applications. 180, 9 ( Jan 2018), 46-53. DOI=10.5120/ijca2018916149

@article{ 10.5120/ijca2018916149,
author = { Hebat-Allah Saber Ibrahim, M. A. Abdou, Ragab Omar Abdelrahman },
title = { A Fast Interest Points Feature Descriptors Algorithm for Mobile Image Retrieval Applications },
journal = { International Journal of Computer Applications },
issue_date = { Jan 2018 },
volume = { 180 },
number = { 9 },
month = { Jan },
year = { 2018 },
issn = { 0975-8887 },
pages = { 46-53 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume180/number9/28894-2018916149/ },
doi = { 10.5120/ijca2018916149 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-07T01:00:14.675847+05:30
%A Hebat-Allah Saber Ibrahim
%A M. A. Abdou
%A Ragab Omar Abdelrahman
%T A Fast Interest Points Feature Descriptors Algorithm for Mobile Image Retrieval Applications
%J International Journal of Computer Applications
%@ 0975-8887
%V 180
%N 9
%P 46-53
%D 2018
%I Foundation of Computer Science (FCS), NY, USA
Abstract

High smart phones capability increases visual data uploaded and downloaded between users and service providers. Query by image content means applying computer vision techniques to the image retrieval problem or searching for digital images in large databases. Such applications are becoming vital: medical, forensics, military, and novel Geographical Information Systems (GIS). Future may enable a new class of applications which uses mobiles to search about objects. Google goggles, kooaba, and Snaptotell are all considered pioneers that use image retrieval algorithms. This paper introduces a novel mobile server-based visual search application. The proposed method introduces Interest Points (IPs) feature descriptors from query that could overcome image capturing problems: noise, rotation, and cropping effects. The paper applies the proposed IPs descriptors on an adequate image database. Comparison with related work, error and time measures are also considered.

References
  1. C. D Manning, P. Raghavan and H. Schütze. 2008. Introduction to information retrieval. Cambridge University Press.
  2. Mead Data Central. LEXIS. 1980. A Primer and LEXIS Quick Reference Manual. New York: Mead Data Central.
  3. . Girod, V. Chandrasekhar, D. M. Chen, N.M. Cheung, R. Grzeszczuk, Y. Reznik, G. Takacs, S. S. Tsai, R. Vedantha. 2011.Mobile visual search. IEEE signal processing magazine. vol. 28. no. 4. pp.61-76.
  4. B. Girod, V. Chandrasekhar, R. Grzeszczuk, Y. A. Reznik. 2011. Mobile visual search: Architectures, technologies, and the emerging MPEG standard. IEEE MultiMedia, vol. 18. no. 3. pp. 86-94.
  5. C. Schmid, R. Mohr, C. Bauckhage. 2000. Evaluation of interest point detectors. International Journal of computer vision. Vol. 37. issue 2. pp.151-172.
  6. Google Goggles, Available: http://www.google.com/mobile/goggles/, last accessed date: July-2017.
  7. Y. Zheng, M. Z., Y. Song, H. Adam, U. Buddemeier, A. Bissacco, F. Brucher, T.-S. Chua, and H. Neven. 2009. Tour theworld: Building a web-scale landmark recognition engine. CVPR. IEEE. pp. 1085–1092.
  8. D. Lowe. 2004. Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision. vol. 60. no. 2. pp. 91–110.
  9. G. Amato, F. Falchi, and P. Bolettieri. 2010. Recognizing Landmarks Using Automated Classification Techniques: an Evaluation of Various Visual Features. Advances in Multimedia (MMEDIA). pp. 78-83.
  10. D. S. Prasvita and Y. Herdiyeni. 2013. mobile application for medicinal plant identification based on leaf image. International Journal on Advanced Science, Engineering and Information Technology. Vol. 3. pp.103-104.
  11. S. S. Tsai, D. M. Chen, V. Chandrasekhar, G. Takacs, N.-M. Cheung,R.Vedantham, R. Grzeszczuk, and B. Girod. 2010. Mobile product recognition. ACM International Conference on Multimedia. Folrence. Italy. pp. 1587-1590.
  12. S. S. Tsai, D. M. Chen, G. Takacs, V. Chandrasekhar, R. Vedantham, R. Grzeszczuk, and B. Girod. 2010. Fast geometric re-ranking for image-based retrieval. International Conference on Image Processing. Hong Kong.
  13. D. M. Jang and Matthew Turk. 2010. Car-Rec: A real time car recognition system. Proc. IEEE Workshop on Applications of computer vision. Kona. Usa. pp. 599-605.
  14. H. Bay, T. Tuytelaars, and L. Van Gool. 2006. SURF: Speeded Up Robust Features. Proc. Of European Conference on Computer Vision (ECCV). Graz. Austria.
  15. Kooaba,Available: https://www.crunchbase.com/product/kooaba-image-recognition-api#/entity, last accessed date: July-2017.
  16. Opencv, Available: http://opencv.org, last accessed date: July-2017.
  17. Lim, J. H., Chevallet, J. P., & Merah, S. N. 2004. SnapToTell: Ubiquitous information access from camera. Workshop on mobile and ubiquitous information access.
  18. H. Kawaji, K. Hatada, T. Yamasaki, and K. Aizawa. 2010. Image-based indoor positioning system: fast image matching using omnidirectional panoramic images. Proc.ACM International Workshop on Multimodal pervasive video analysis. Florence. Italy. pp.1-4.
  19. Y. Ke and R. Sukthankar. 2004. PCA-SIFT: a more distinctive representation for local image descriptors. Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Vol. 1. pp. 511-517.
  20. M. Datar, N. Immorlica, P. Indyk, and V. S. Mirrokni. 2004. Locality-sensitive hashing scheme based on p-stable distributions. Proceedings of the 20th Annual Symosium on Computational Geometry. pp. 253-262.
  21. S.S. Tasi,D. Chen, J.P.Siingh, and B. Girod. 2008. Rate-efficient, real-time cd cover recognition on a camera-phone. Proceedings of ACM Intern. Conf. on Multimedia. Canada. pp.1023-1024.
  22. Boofcv, Available: http://boofcv.org, last accessed date: July-2017.
  23. M. Brown, G. Hua, and S. Winder. 2011. Discriminative learning of local image descriptors. IEEE transactions on pattern analysis and machine intelligence. vol.1. pp.43-57.
  24. P. Simard, Y. LeCun, JS. Denker. 1993. Efficient pattern recognition using a new transformation distance. Advances in neural information processing systems. pp. 50-58.
  25. P. Simard Eon, P. Y. Simard, P. Haffner, and Y. Lecun. 1999. Boxlets: a fast convolution algorithm for signal processing and neural networks. Advances in Neuralltiformation Processing Systems. MIT Press. pp. 571-577.
  26. A. Neubeck, and L. V. Gool. 2006. Efficient non-maximum suppression. Pattern Recognition IEEE. vol. 3. pp. 850-855.
Index Terms

Computer Science
Information Sciences

Keywords

Mobile visual search interest point detection descriptors image retrieval