CFP last date
20 December 2024
Reseach Article

Investigation of Electrical Performance of HfO2-ZnO Bilayer Channels of Thin-Film Transistors using TCAD

by Shashi Kant Dargar, J. K. Srivastava, Santosh Kumar Bharti
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 180 - Number 7
Year of Publication: 2017
Authors: Shashi Kant Dargar, J. K. Srivastava, Santosh Kumar Bharti
10.5120/ijca2017916068

Shashi Kant Dargar, J. K. Srivastava, Santosh Kumar Bharti . Investigation of Electrical Performance of HfO2-ZnO Bilayer Channels of Thin-Film Transistors using TCAD. International Journal of Computer Applications. 180, 7 ( Dec 2017), 46-49. DOI=10.5120/ijca2017916068

@article{ 10.5120/ijca2017916068,
author = { Shashi Kant Dargar, J. K. Srivastava, Santosh Kumar Bharti },
title = { Investigation of Electrical Performance of HfO2-ZnO Bilayer Channels of Thin-Film Transistors using TCAD },
journal = { International Journal of Computer Applications },
issue_date = { Dec 2017 },
volume = { 180 },
number = { 7 },
month = { Dec },
year = { 2017 },
issn = { 0975-8887 },
pages = { 46-49 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume180/number7/28816-2017916068/ },
doi = { 10.5120/ijca2017916068 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-07T01:00:03.093416+05:30
%A Shashi Kant Dargar
%A J. K. Srivastava
%A Santosh Kumar Bharti
%T Investigation of Electrical Performance of HfO2-ZnO Bilayer Channels of Thin-Film Transistors using TCAD
%J International Journal of Computer Applications
%@ 0975-8887
%V 180
%N 7
%P 46-49
%D 2017
%I Foundation of Computer Science (FCS), NY, USA
Abstract

This paper shows the investigation of electrical performance of ZnO-based thin-film transistors (TFTs) with a multichannel layer. The multichannel TFTs consisting of HfO2 and ZnO layers were deployed to insight of sufficient channel mobility and electrical stability. The obtained sub-threshold slope (1.69 ± 0.16 Volt/decade) decreased in comparison to single channel, with an increase in ON/OFF ratio ION/IOFF (3.1 ± 1.6 × 105). The device mobility is found increased due to addition the channel layer. The mobility achieved is 2.36 × 10-3 cm2/V-s. Due to the reduced interface trap density between the channel and dielectric layers, increases in the offset and the bandgap and improves the dielectric and interface quality. The oxide TFTs with a multilayer channel displayed comparatively good stability and mobility.

References
  1. Wager J. F. 2003 Transparent electronics, (May 2003) 1245-1246.
  2. Minami T., 2005 Transparent conducting oxide semiconductors for transparent electrodes, Semicond. Sci. Technol., (Mar. 2005) 535-544.
  3. Hoffman R. L., Norris B. H. and Wager J. F. 2003 ZnO-based transparent thin-film transistors, Appl. Phys. Lett. (Feb. 2003) 733-735.
  4. Nomura K., Ohta H., Takagi A., Kamiya T., Hirano M., and Hosono H., 2004 Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors Nature, (Nov. 2004) 488-492.
  5. Fortunato M. C., Barquinha P. M. C., Pimentel A. C. M. B. G., Goncalves A. M. F., Marques A. J. S., Pereira L. M. N., 2005 Fully transparent ZnO thin-film transistor produced at room temperature,” Adv. Mater., (Mar. 2005) 590–594.
  6. Park S. K., Hwang C., Ryu M., Yang S., Byun C., Shin. J., 2005 Transparent and photo-stable ZnO thin-film transistors to drive an active matrix organic-light-emitting-diode display panel, Adv. Mater., (Mar. 2005) 590–594.
  7. Lopes M. E., Gomes H. L., Medeiros M. C. R., Barquinha P., Pereira L., Fortunato E., 2009 Gate-bias stress in amorphous oxide semiconductors thin-film transistors, Appl. Phys. Lett., (Aug. 2009) 063502-1-063502-3.
  8. Jeong J. K., Yang H. W., Jeong J. H., Mo Y.G., and Kim H. D., 2008 Origin of threshold voltage instability in indium-gallium-zinc oxide thin film transistors, Appl. Phys. Lett., (Sep. 2008) 123508-1–123508-3.
  9. Oh H., Yoon S. M., Ryu M. K., Hwang C. S., Yang S., and Park H. K., 2010 Photon-accelerated negative bias instability involving subgap states creation in amorphous In–Ga–Zn–O thin film transistor, Appl. Phys. Lett., (Nov. 2010) 183502-1–183502-3.
  10. Hosono H. 2006 Ionic amorphous oxide semiconductors: Material design, carrier transport, and device application, J. Non-Cryst. Solids, (Apr. 2006) 851–858.
  11. Ahn C. H., Kong B. H., Kim H., and Cho H. K., 2011 Improved electrical stability in the Al doped ZnO thin-film-transistors grown by atomic layer deposition, J. Electrochem. Soc., H170–H173.
  12. Kim C. J., Kim S., Lee H., Park J. S., Kim S., Park J., 2009 Amorphous hafnium-indium-zinc oxide semiconductor thin film transistors, Appl. Phys. Lett., (Dec. 2009) 252103-1–252103-3.
  13. Chong E., Jo K. C., and Lee S. Y., 2010 High stability of amorphous hafnium-indium-zinc-oxide thin film transistor, Appl. Phys. Lett., (Apr. 2010) 152102-1–152102-3.
  14. Kim J. I., Ji K. H., Jung H. Y., Park S. Y., Choi R., Jang M., 2011 Improvement in both mobility and bias stability of ZnSnO transistors by inserting ultra-thin InSnO layer at the gate insulator/channel interface, Appl. Phys. Lett., (Sep. 2011) 122102-1–122102-3.
  15. Chong E. and Lee Y., 2012 Influence of a highly doped buried layer for HfInZnO thin-film transistors, Semi Cond. Sci. Technol., (Jan. 2012) 012001-1-012001-4.
  16. Park J. C., Kim S., Kim C., Song I., Park Y. 2010 Highly stable transparent amorphous oxide semiconductor thin-film transistors having double-stacked active layers, Adv. Mater., (Dec. 2010) 5512–5516.
  17. Jeon S., Ahn S., Song I., Kim C. J., Chung U., Lee E., 2012 Gated three-terminal device architecture to eliminate persistent photoconductivity in oxide semiconductor photosensor arrays, Nature Mater., 301-305.
Index Terms

Computer Science
Information Sciences

Keywords

Hafnium-oxide (HfO2) multilayer channel thin-film transistor (TFT) ZnO TCAD.