CFP last date
20 January 2025
Reseach Article

Tourism Recommender Systems: An Overview of Recommendation Approaches

by Larbi Kzaz, Dounia Dakhchoune, Dounia Dahab
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 180 - Number 20
Year of Publication: 2018
Authors: Larbi Kzaz, Dounia Dakhchoune, Dounia Dahab
10.5120/ijca2018916458

Larbi Kzaz, Dounia Dakhchoune, Dounia Dahab . Tourism Recommender Systems: An Overview of Recommendation Approaches. International Journal of Computer Applications. 180, 20 ( Feb 2018), 9-13. DOI=10.5120/ijca2018916458

@article{ 10.5120/ijca2018916458,
author = { Larbi Kzaz, Dounia Dakhchoune, Dounia Dahab },
title = { Tourism Recommender Systems: An Overview of Recommendation Approaches },
journal = { International Journal of Computer Applications },
issue_date = { Feb 2018 },
volume = { 180 },
number = { 20 },
month = { Feb },
year = { 2018 },
issn = { 0975-8887 },
pages = { 9-13 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume180/number20/29046-2018916458/ },
doi = { 10.5120/ijca2018916458 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-07T01:01:11.242686+05:30
%A Larbi Kzaz
%A Dounia Dakhchoune
%A Dounia Dahab
%T Tourism Recommender Systems: An Overview of Recommendation Approaches
%J International Journal of Computer Applications
%@ 0975-8887
%V 180
%N 20
%P 9-13
%D 2018
%I Foundation of Computer Science (FCS), NY, USA
Abstract

Recommender systems have become an active research topic during the last two decades, thus giving rise to several approaches and techniques. They have also become increasingly popular among practitioners and used in variety of areas including movies, news, books, research articles restaurants, garments, financial services, insurance, social tags and products in general. Tourism is an important sector for economic development and a potential application area of use of recommender systems. This paper presents an overview of existing recommender approaches used in tourism and discusses their relevance taking into account tourism context and specificities.

References
  1. Mahmood, T., Ricci, F.: Improving recommender systems with adaptive conversational strategies. In: C. Cattuto, G. Ruffo, F. Menczer (eds.) Hypertext, pp. 73–82. ACM (2009)
  2. Resnick, P., Varian, H.R.: Recommender systems. Communications of the ACM 40(3), 56–58 (1997)
  3. Burke, R.: Hybrid web recommender systems. In: The AdaptiveWeb, pp. 377–408. Springer Berlin / Heidelberg (2007)
  4. Deuk Hee Park, Hyea Kyeong Kim et. Al., “A Review and Classification of Recommender Systems Research”, in IPEDR vol. 5 2011, International conference on Social science and humanity, Singapore 2011.
  5. Herlocker, J.L., and Konstan, J.A. “content-Independent Task-Focused Recommendation”, IEEE Internet Computing, Vol. 5, 2001,pp. 40-47.
  6. Resnick, P., Iakovou, N., Sushak, M ., Bergstrom, P. and Riedl, J.“GroupLens An Open Architecture for Collaborative Filtering of Netnews,” Computer Supported Cooperative Work Conf, 1994.
  7. Shardanand, U., Maes, P. “Social Information Filtering: Algorithms for Automating ‘Word of Mouth”, Conf. Human Factors in Computing Systems, 1995
  8. Gediminas Adomavicius, Alexander Tuzhilin Toward the Next Generation of Recommender Systems: A Survey of the State-of-the-Art and Possible Extensions
  9. Walter Carrer-Neto, Maria Luisa Hernandez-Alcaraz, Rafael Valencia-Garcia , Francisco Garcia-Sanchez X Social knowledge-based recommender system. Application to the movies domain. 2012
  10. A.Moreno, L.Sebastiá and P.Vansteenwegen Recommender Systems in Tourism 2015
  11. Kevin Meehan, Tom Lunney, Kevin Curran, Aiden McCaughey 2013 Context-Aware Intelligent Recommendation System for Tourism
  12. Dalia Sulieman. Systèmes de recommandation sociaux et sémantiques 2014
  13. Moreno, A., Valls, A., Isern, D., Marin, L., & Borràs, J. (2013). SigTur/e-destination: Ontology-based personalized recommendation of tourism and leisure activities. Engineering Applications of Artificial Intelligence, 26, 633–651
  14. Charif Alcheikh Haydar Les systèmes de recommandation base de confiance, thèse de doctorat 2014
  15. Jonathan Loudec Stratégies de Bandit pour les Systèmes de Recommandation thèse doctorale 2016
  16. Context-Aware recommender systems Gediminas Adomavicius, Alexander Tuzhilin in F. Ricci, et al. (Ed.), Recommender Systems Handbook, 2011, pp. 217–253.
  17. Daniar Asanov Algorithms and Methods in Recommender Systems 2011
  18. Jonathan Loudec Stratégies de Bandit pour les Systèmes de Recommandation thèse doctorale 2016
  19. Francesco Ricci Travel Recommender Systems IEEE INTELLIGENT SYSTEMS 2002.
  20. Anind K. Dey and Gregory D. AbowdTowards a Better Understanding of Context and Context-Awareness 2000
  21. Janet Rajeswari , Shanmugasundaram Hariharan Personalized Search Recommender System: State of Art, Experimental Results and Investigations on Tourist Interests and Preferences 2016
  22. Liliana Ardissono Intrigue: Personalized recommendation of tourist attractions for desktop and handset devices applied artificial intelligence Special Issue on Artificial Intelligence for Cultural Heritage and Digital Libraries 17(8-9), pp. 687-714, 2003
  23. Ilhem Boussaid Personnalisation de l’information et gestion des profils utilisateurs : une approche fondée sur les ontologies thèse doctorale 2005
  24. Imen Akermi, Mohand Boughanem, Rim Faiz Une approche de recommandation proactive dans un environnement mobile 2016
  25. Marie-Françoise Canut, Sirinya On-at, André Péninou, Florence Sèdes Enrichissement du profil utilisateur à partir de son réseau social dans un contexte dynamique : application d’une méthode de pondération temporelle 2013
  26. Thomas Robert GRUBER, Gregory OLSEN, An ontology for enginering mathematics. In Proceedings of the 4th International Conference on Principles of Knowledge Representation and Reasonning. MorganKauffmann,1994
  27. Bouchra Aadil, Abderrahim Ait Wakrime, Larbi Kzaz, Abderrahim Sekkaki Ontological approach for Data WareHouse design 2015
  28. Larbi Kzaz, Hicham Elasri, Abderrahim Sekkaki An ontology-based method for semantic integration of business components 2011
  29. Nikola Minić, Angelina Njeguš, Jelena Tulić Ceballos The Impact of Web 3.0 Technologies on tourism information systems 2014
  30. Dieudonné Tchuente, André Peninou, Marie-Francoise Canut, Nadine Baptiste-Jessel, Florence Sesdes Modélisation du processus de développement des profils utilisateurs dans les systèmes d’information 2010
  31. Victor Codina and Luigi Ceccaroni Taking Advantage of Semantics in Recommendation Systems 2010
  32. Romain Picot-Clémente Une architecture générique de Systèmes de recommandation de combinaison d’items. Application au domaine du tourisme Mémoire de Thèse 2012
  33. Malak Al-Hassan, Haiyan Lu , Jie Lu A semantic enhanced hybrid recommendation approach: A case study of e-Government tourism service recommendation system 2015
  34. Gao, M., Liu, K., & Wu, Z. (2010). Personalization in web computing and informatics: Theories, techniques, applications, and future research. Information Systems Frontiers, 12, 607–629.
  35. Miquel Montaner, Beatriz Lopez And Joseph Louis De Larosa 2003 A Taxonomy Of Recommender Agents On The Internet
  36. Tobias Berka and Manuela Plößnig Designing Recommender Systems for Tourism
  37. Annika Hinze and Saijai Junmanee Travel Recommendations in a Mobile Tourist Information System
  38. Lior Rokach, Bracha Shapira Introduction to Recommender System Handbook Francesco Ricci, 2010.
  39. Pasquale Lops, Marco de Gemmis and Giovanni Semeraro Content-based Recommender Systems: State of the Art and Trends 2010.
Index Terms

Computer Science
Information Sciences

Keywords

Recommender systems Tourism field Content based Collaborative based Ontology Based Hybrid Recommender System.