CFP last date
20 December 2024
Reseach Article

Implementation of Fuzzy Thresholding for Segmentation of Images

by S. Santhi Kumari, Vamsidhar Enireddy
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 180 - Number 2
Year of Publication: 2017
Authors: S. Santhi Kumari, Vamsidhar Enireddy
10.5120/ijca2017915957

S. Santhi Kumari, Vamsidhar Enireddy . Implementation of Fuzzy Thresholding for Segmentation of Images. International Journal of Computer Applications. 180, 2 ( Dec 2017), 46-51. DOI=10.5120/ijca2017915957

@article{ 10.5120/ijca2017915957,
author = { S. Santhi Kumari, Vamsidhar Enireddy },
title = { Implementation of Fuzzy Thresholding for Segmentation of Images },
journal = { International Journal of Computer Applications },
issue_date = { Dec 2017 },
volume = { 180 },
number = { 2 },
month = { Dec },
year = { 2017 },
issn = { 0975-8887 },
pages = { 46-51 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume180/number2/28776-2017915957/ },
doi = { 10.5120/ijca2017915957 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-07T01:04:22.308892+05:30
%A S. Santhi Kumari
%A Vamsidhar Enireddy
%T Implementation of Fuzzy Thresholding for Segmentation of Images
%J International Journal of Computer Applications
%@ 0975-8887
%V 180
%N 2
%P 46-51
%D 2017
%I Foundation of Computer Science (FCS), NY, USA
Abstract

Segmentation is a process of dividing an image into multiple regions making it easier for the analysis. It is also an important step in Image processing. It also has number of applications which includes Medical field to analyze a disease, scientific fields including, engineering and technology, face recognition and object. Many algorithms and techniques have been developed for the image segmentation. To remove distinctive areas from a picture an immediate and straight forward method is using thresholding. It looks for a worldwide esteem that boosts the partition between yield classes. Noisy or uneven illuminated images pose a challenge for segmentation. The utilization of solitary hard limit esteem is absolutely the wellspring of imperative division mistakes in numerous situations like boisterous images or uneven illumination. In this paper a multiregion thresholding technique is displayed to overcome the normal downsides of thresholding strategies when images are debased with artifacts and commotion. Pixels from the images are related to various yield centroids by means of fuzzy membership function, evading any underlying hard choice. To make this strategy robust to noise and artifacts it utilizes spatial data through a local aggregation step where the participation level of every pixel is adjusted by neighborhood data that considers the enrollments of the encompassing pixels. The results are then compared with the existing techniques and results obtained are satisfactory.

References
  1. M. Sharif, S. Mohsin , M. J. Jamal, and M. Raza, “Illumination normalization preprocessing for face recognition,” in Proc .International Conference on Environmental science and information application technology ,pp. 44-47,2010.
  2. M. Yasmin, M. Sharif, S. Masood, M. Raza, and S. Mohsin, “Brain image enhancement-A survey,” World Applied Sciences journal, , vol. 17, pp. 1192-1204, 2012
  3. J. Reinhardt and W. Higgins, “Automatis generation of image segmentation processes,” IEEE Trans. Image Processing, , vol. 3, pp. 791–795, Nov 1994.
  4. http://homes.di.unimi.it/ferrari/ImgProc2011_12/EI2011_12_16_segmentation_double.pdf
  5. S. Taheri, S. Ong, V. Chong, Level-set segmentation of brain tumors using a threshold-based speed function, Image and Vision Computing 28 (1) (2010) 26 - 37.
  6. D. Mukherjee, N. Ray, S. Acton, Level set analysis for leukocyte detection and tracking, IEEE Trans.Image Proccess. 13 (4) (2004) 562-572.
  7. J. Sijbers, A. Postnov, Reduction of ring artefacts in high resolution micro-CT reconstructions, Physics in Medicine and Biology 49 (14) (2004) 247.
  8. P. L. Rosin, Thresholding for change detection, Computer Vision and Image Understanding 86 (2) (2002) 79 - 95.
  9. P. L. Rosin, E. Ioannidis, Evaluation of global image thresholding for change detection, Pattern Recognition Letters 24 (14) (2003) 2345 { 2356.
  10. G. Vegas-Sanchez-Ferrero, S. Aja-Fernandez, C. Palencia, M. Martin-Fernandez, A generalized gamma mixture model for ultrasonic tissue characterization, Computational and mathematical methods in medicine 2012.
  11. N. Otsu, A threshold selection method from gray-scale histogram, IEEE Trans. on Sys., Man and Cyb.9 (1) (1979) 62-66.
  12. T. Kurita, N. Otsu, N. Abdelmalek, Maximum likelihood thresholding based on population mixture models, Pattern Recognition 25 (10) (1992) 1231-1240.
  13. M. Sezgin, B. Sankur, Survey over image thresholding techniques and quantitative performance evaluation, Journal of Electronic Imaging 13 (1) (2004) 146-165.
  14. H. Wu, J. Barba, J. Gil, Iterative thresholding for segmentation of cells from noisy images, Journal of Microscopy 197 (3) (2000) 296-304.
  15. C. Leung, F. Lam, Maximum a posteriori spatial probability segmentation, Vision, Image and Signal Processing, IEE Proceedings- 144 (3) (1997) 161-167.
  16. P. K. Sahoo, S. Soltani, A. K. C.Wong, A survey of thresholding techniques, Computer Vision, Graphics, and Image Processing 41 (2) (1988) 233 - 260.
  17. R. C. Gonzalez, R. E. Woods, Digital Image Processing, Addision Wesley, 1992.
  18. L. Mahmoudi, A. El Zaart, A survey of entropy image thresholding techniques, in: Advances in Computational Tools for Engineering Applications (ACTEA), 2012 2nd International Conference on, IEEE,2012, pp. 204-209
  19. S. U. Lee, S. Yoon Chung, R. H. Park, A comparative performance study of several global thresholding techniques for segmentation, Computer Vision, Graphics, and Image Processing 52 (2) (1990) 171-190.
  20. F. R. D. Velasco, Thresholding using the isodata clustering algorithm, IEEE Trans. on Sys., Man and Cyb. SMC-10 (1980) 771- 774.
  21. H. Lee, R. H. Park, Comments on an optimal threshold schemefor image segmentation, IEEE Trans. On Sys., Man and Cyb. SMC-20 (1990) 741-742.
  22. W. Cai, S. Chen, D. Zhang, Fast and robust fuzzy c-means clustering algorithms incorporating local information for image segmentation, Pattern Recognition 40 (3) (2007) 825-838.
  23. Y. Yong, Z. Chongxun, L. Pan, A novel fuzzy c-means clustering algorithm for image thresholding, Measurement Science Review 4 (1) (2004) 11-19.
  24. A. Masood, Al-Jumaily, A. Ali, Fuzzy c mean thresholding based level set for automated segmentation of skin lesions, Journal of Signal and Information Processing 4 (2013) 66.
  25. B. N. Li, C. K. Chui, S. Chang, S. H. Ong, Integrating spatial fuzzy clustering with level set methods for automated medical image segmentation, Computers in Biology and Medicine 41 (1) (2011) 1- 10.
  26. T. Pun, A new method for gray-level picture threshold using theentropy of the histogram, Signal Processing 23 (1980) 223-237.
  27. T. Pun, Entropic thresholding: A new approach, Computer Graphics and Image Processing 16 (1981) 210-239.
  28. J. N. Kapur, P. K. Sahoo, A. K. C. Wong, A new method for gray-level picture thresholding using the entropy of the histogram, Graph. Models Image Process. 29 (1985) 273-285.
  29. L. Hertz, R. W. Schafer, Multilevel thresholding using edge matching, Comput. Vis. Graph. Image Process. 44 (1988) 279- 295.
  30. L. OGorman, Binarization and multithresholding of document images using connectivity, Graph. Models Image Process. 56 (1994) 494-506.
  31. S. K. Pal, R. A. King, A. A. Hashim, Automatic gray level thresholding through index of fuzziness and entropy, Pattern Recogn. Lett. 1 (1980) 141-146.
  32. C. A. Murthy, S. K. Pal, Fuzzy thresholding: A mathematical framework, bound functions and weighted moving average technique, Pattern Recogn. Lett. 11 (1990) 197-206.
  33. K. Ramar, S. Arunigam, S. N. Sivanandam, L. Ganesan, , D. Manimegalai, Quantitative fuzzy measures for threshold selection, Pattern Recogn. Lett. 21 (2000) 1-7.
  34. O. J. Tobias, R. Seara, Image segmentation by histogram thresholding using fuzzy sets, IEEE Trans.Image Proccess. 11 (12) (2002) 1457-1465.
  35. M. Forero, Fuzzy thresholding and histogram analysis, in: M. Nachtegael, D. Van der Weken, D. Van deVille, E. Kerre (Eds.), Fuzzy Filters for Image Processing, Springer, Berlin, 2003, pp. 129-152.
  36. A. Z. Arin, A. F. Heddyanna, H. Studiawan, Ultrafuzziness optimization based on type ii fuzzy sets for image thresholding, ITB Journal of Information and Communication Technology 4 (2) (2010) 79-94.
  37. H. R. Tizhoosh, Image thresholding using type II fuzzy sets, Pattern recognition 38 (12) (2005) 2363-2372.
  38. J. M. Mendel, Fuzzy logic systems for engineering: A tutorial, Proceedings of the IEEE 83 (3) (1995) 345-377.
  39. L. A. Zadeh, Fuzzy logic and approximate reasoning, September 1975, Volume 30, Issue 3–4, pp 407–428.
  40. J. M. Mendel, Fuzzy logic systems for engineering: A tutorial, Proceedings of the IEEE 83 (3) (1995) 345-377.
  41. http://sipi.usc.edu/~kosko/Scientific%20American.pdf
  42. E. Kerre, M. Nachtegael (Eds.), Fuzzy techniques in image processing, Physica-Verlag, New York, 2000.
  43. http://www.philadelphia.edu.jo/academics/qhamarsheh/uploads/Lecture%2018_Different%20Types%20of%20Membership%20Functions%201.pdf
  44. Santiago Aja-Fernandez, Ariel Hernan Curiale, Gonzalo Vegas-Sanchez-Ferrero, A local fuzzy thresholding methodology for multiregion image segmentation, Knowledge-Based Systems, January 26, 2015.
  45. X. Zeng, M. Singh, Approximation theory of fuzzy systems- SISO case, IEEE Trans. Fuzzy Sys. 2 (2) (1994) 162{176.
  46. F. Russo, fFIREg operators for image processing, Fuzzy Sets and Systems 103 (2) (1999) 265 { 275.
  47. H. Tizhoosh, Fast fuzzy edge detection, in: Fuzzy Information Processing Society, 2002. Proceedings.NAFIPS. 2002 Annual Meeting of the North American, 2002, pp. 239-242.
  48. D. Van De Ville, M. Nachtegael, D. Van der Weken, E. Kerre, W. Philips, I. Lemahieu, Noise reduction by fuzzy image filtering, IEEE Trans. Fuzzy Sys. 11 (4) (2003) 429-436.
  49. K.-S. Chuang, H.-L. Tzeng, S. Chen, J. Wu, T.-J. Chen, Fuzzy c-means clustering with spatial
  50. information for image segmentation, Computerized Medical Imaging and Graphics 30 (1) (2006) 9 -15.
  51. Yong Yang and Shuying Huang ―”Image Segmentation By Fuzzy C-Means Clustering Algorithm With A Novel Penalty Term” Computing And Informatics, Vol. 26, 2007, 17–31.
  52. Otsu, N., "A Threshold Selection Method from Gray- Level Histograms," IEEE Transactions on Systems, Man, and Cybernetics, Vol. 9, No. 1, 1979, pp. 62-66.
  53. Suman Tatiraju and Avi Mehta ―Image Segmentation using k-means clustering, EM and Normalized Cuts” www.ics.uci.edu/~dramanan/teaching/ics273a.../avim_report.pdf
  54. Dunn, J. C.: A Fuzzy Relative of the ISODATA Process and its Use in Detecting Compact Well Separated Clusters. Journal of Cybernetics, Vol. 3, 1974, pp. 32–57.
  55. Bezdek, J. C.: Pattern Recognition with Fuzzy Objective Function Algorithms. New York: Plenum Press, 1981.
  56. Prˆeteux, F., Fetita, C., Capderou, A., Grenier, P.: Modeling, segmentation, and caliber estimation of bronchi in high resolution computerized tomography. Journal of Electronic Imaging 8 (1999) 36–45.
  57. Fetita, C., Preteux, F., Beigelman-Aubry, C., Grenier, P.: Pulmonary Airways: 3-D Reconstruction From Multislice CT and Clinical Investigation. IEEE Transactions on Medical Imaging 23 (2004) 1353–1364
  58. http://www.di.univr.it/documenti/OccorrenzaIns/matdid/matdid453675.pdf
  59. https://arxiv.org/pdf/1705.08790.pdf
  60. https://www2.eecs.berkeley.edu/Research/Projects/CS/vision/bsds/
Index Terms

Computer Science
Information Sciences

Keywords

Image Processing Segmentation Thresholding fuzzy.