CFP last date
20 January 2025
Reseach Article

Efficient Topic Detection System for Online Arabic News

by Mohammed M. Fouad, Marwa A. Atyah
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 180 - Number 12
Year of Publication: 2018
Authors: Mohammed M. Fouad, Marwa A. Atyah
10.5120/ijca2018916236

Mohammed M. Fouad, Marwa A. Atyah . Efficient Topic Detection System for Online Arabic News. International Journal of Computer Applications. 180, 12 ( Jan 2018), 7-12. DOI=10.5120/ijca2018916236

@article{ 10.5120/ijca2018916236,
author = { Mohammed M. Fouad, Marwa A. Atyah },
title = { Efficient Topic Detection System for Online Arabic News },
journal = { International Journal of Computer Applications },
issue_date = { Jan 2018 },
volume = { 180 },
number = { 12 },
month = { Jan },
year = { 2018 },
issn = { 0975-8887 },
pages = { 7-12 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume180/number12/28912-2018916236/ },
doi = { 10.5120/ijca2018916236 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-07T01:00:27.244177+05:30
%A Mohammed M. Fouad
%A Marwa A. Atyah
%T Efficient Topic Detection System for Online Arabic News
%J International Journal of Computer Applications
%@ 0975-8887
%V 180
%N 12
%P 7-12
%D 2018
%I Foundation of Computer Science (FCS), NY, USA
Abstract

Nowadays, the news is updated very frequently, especially in the Middle East region where the Arabic language is the primary language of all its countries. The people in this region are interested in following up these updates through the available online news platforms. In order to automate the work in the news agencies, there is an urgent need for an automated system that is able to detect the topic of the news once it has arrived at the agency. In this paper, an efficient system is presented for classifying the online Arabic news into its proper topic. The proposed system uses various natural language processing techniques along with different classification methods. The experimental results show that utilizing the Information Gain, as a feature selection technique, with the Naïve Bayes algorithm, achieves the best accuracy in order to solve the topic detection problem for the online Arabic news.

References
  1. Lewis, D. 1991. Evaluating text categorization. In Proceedings of the Workshop on Speech and Natural Language (HLT ‘91; Vol. 91. pp. 312–318). Association for Computational Linguistics, Stroudsburg, PA.
  2. Aggarwal, C. and Zhai, C. (Eds.) 2012. Mining text data. New York: Springer USA.
  3. Kanaan, G., Al-Shalabi, R., Ghwanmeh, S. and Al-Ma'adeed, H. 2009. A comparison of text-classification techniques applied to Arabic text. Journal of the American Society for Information Science and Technology, 60(9), 1836–1844.
  4. Ababneh, J., Almomani, O., Hadi, Q., Kamel, N. El-Omari, T. and Al-Ibrahim, A. 2014. Vector Space Models to Classify Arabic Text. International Journal of Computer Trends and Technology (IJCTT), vol. 7, no. 4, 219-223.
  5. Al-Harbi, S., Almuhareb, A., Al-Thubaity, A., Korsheed, M. S. and Al-Rajeh, A. 2008. Automatic Arabic Text Classification. JADT’08: 9es Journées internationales d’Analyse statistique des Données Textuelles.
  6. Kompan, M. and Bieliková, M. 2011. News Article Classification Based on a Vector Representation Including Words’ Collocations. In Advances in Intelligent and Soft Computing. Vol. 101, Berlin: Springer, 1-8.
  7. Saad, M. 2011. Arabic text classification. Saarbrücken, Germany: Lap Lambert Academic Publishing, VDM.
  8. Al-Saleem, S. 2011. Automated Arabic text categorization using SVM and NB. International Arab Journal of e-Technolgy, vol. 2, no. 2, 124–128.
  9. Mesleh, A.M.  2006. Chi square feature extraction based SVMs Arabic language text categorization system. Journal of Computer Science, vol. 3, no. 6, 430–435.
  10. Harrag F. and El-Qawasmeh, E. 2009. Neural Network for Arabic text classification. In Proceedings of the 2nd International Conference of Applications of Digital Information and Web Technologies, ICADIWT’09, pp. 778-783.
  11. Al-Tahrawi, M.M. and Al-Khatib, S.N. 2015. Arabic text classification using Polynomial Networks. Journal of King Saud University - Computer and Information Sciences, vol. 27, no. 4, 437-449.
  12. Khreisat, L. 2006. Arabic Text Classification Using N-Gram Frequency Statistics: A Comparative Study. In Proceedings of the 2006 International Conference on Data Mining (DMIN 2006), June 26–29, Las Vegas, Nevada, USA, pp. 78–82.
  13. Sawaf, H., Zaplo, J. and Ney, H. 2001. Statistical classification methods for Arabic news articles. In the Proceedings of the Arabic Natural Language Processing Workshop, ACL’2001, Toulouse, France, pp. 127–132.
  14. Fodil, L., Sayoud, H. and Ouamour, S. 2014. Theme classification of Arabic text: a statistical approach. In Terminology and Knowledge Engineering 2014, Berlin, Germany, pp. 77–86.
  15. El-Halees, A. 2006. Mining Arabic association rules for text classification. In Proceedings of the 1st International Conference on Mathematical Sciences, Palestine: Al-Azhar University of Gaza, pp. 157–167.
  16. Saad, M. K. and Ashour, W. 2010. OSAC: Open Source Arabic Corpus, Proceedings of the 6th International Conference on Electrical and Computer Systems (EECS’10), Lefke, North Cyprus, pp. 1-6.
  17. RapidMiner Studio® Tool for Data Mining Tasks and Implementations: https://rapidminer.com/
  18. Da Silva, N., Hruschka, E. and Hruschka Jr., E. 2014. Tweet sentiment analysis with classifier ensembles. Decision Support Systems, vol. 66, 170 – 179.
  19. Clark, S. and Wicentwoski, R.2013. SwatCS: Combining simple classifiers with estimated accuracy. In Proceedings of the seventh International Workshop on Semantic Evaluation, Atlanta, Georgia, USA, 425-429.
Index Terms

Computer Science
Information Sciences

Keywords

Machine Learning Text Mining Arabic Online News Topic Detection Feature Selection.