International Journal of Computer Applications |
Foundation of Computer Science (FCS), NY, USA |
Volume 179 - Number 9 |
Year of Publication: 2018 |
Authors: Mahmut Dirik |
10.5120/ijca2018916085 |
Mahmut Dirik . Collision-Free Mobile Robot navigation using Fuzzy Logic Approach. International Journal of Computer Applications. 179, 9 ( Jan 2018), 33-39. DOI=10.5120/ijca2018916085
Autonomous mobile robots’ navigation has become a very popular and interesting topic of computer science and robotics in the last decade. Many algorithms have been developed for robot motion control in an unknown (indoor/outdoor) and in various environments (static/dynamic). Fuzzy logic control techniques are an important algorithm developed for robot navigation problems. The aim of this research is to design and develop a fuzzy logic controller that enables the mobile robot to navigate to a target in an unknown environment, using WEBOTS commercial mobile robot simulation and MATLAB software. The algorithm is divided into two stages; In the first stage, the mobile robot was made to go to the goal, and in the second stage, obstacle avoidance was realized. Robot position information (x, y, Ø) was used to move the robot to the target and six sensors data were used during the obstacle avoidance phase. The used mobile robot (E_PUCK) is equipped with 12 IR sensors to measure the distance to the obstacles. The fuzzy control system is composed of six inputs grouped in doubles which are left, front and right distance sensors two outputs which are the mobile robot’s left and right wheel speeds. To check the simulation result for proposed methodology, WEBOTS simulator and MATLAB software were used. To modeling the environment in different complexity and design, this simulator was used. The experimental results have shown that the proposed architecture provides an efficient and flexible solution for autonomous mobile robots and the objective of this research has been successfully achieved. This research also indicated that WEBOT and MATLAB are suitable tools that could be used to develop and simulate mobile robot navigation system.