CFP last date
20 January 2025
Reseach Article

Evolutionary Memetic Models for Malware Intrusion Detection: A Comparative Quest for Computational Solution and Convergence

by I. P. Okobah, A. A. Ojugo
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 179 - Number 39
Year of Publication: 2018
Authors: I. P. Okobah, A. A. Ojugo
10.5120/ijca2018916586

I. P. Okobah, A. A. Ojugo . Evolutionary Memetic Models for Malware Intrusion Detection: A Comparative Quest for Computational Solution and Convergence. International Journal of Computer Applications. 179, 39 ( May 2018), 34-43. DOI=10.5120/ijca2018916586

@article{ 10.5120/ijca2018916586,
author = { I. P. Okobah, A. A. Ojugo },
title = { Evolutionary Memetic Models for Malware Intrusion Detection: A Comparative Quest for Computational Solution and Convergence },
journal = { International Journal of Computer Applications },
issue_date = { May 2018 },
volume = { 179 },
number = { 39 },
month = { May },
year = { 2018 },
issn = { 0975-8887 },
pages = { 34-43 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume179/number39/29340-2018916586/ },
doi = { 10.5120/ijca2018916586 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-07T00:57:53.872270+05:30
%A I. P. Okobah
%A A. A. Ojugo
%T Evolutionary Memetic Models for Malware Intrusion Detection: A Comparative Quest for Computational Solution and Convergence
%J International Journal of Computer Applications
%@ 0975-8887
%V 179
%N 39
%P 34-43
%D 2018
%I Foundation of Computer Science (FCS), NY, USA
Abstract

Data security is now a pertinent issue with advent of the Internet. Methods like cryptography, firewalls and gateways used to prevent attacks on data are becoming unsuccessful. Thus, the need for Intrusion Detection System to enhance security efforts. Varying machine learning models are implemented for rule-based IDS using DARPA dataset to train and generate rules for classification via support-confidence framework and a common fitness function to judge quality of each rule. This will help detect network anomalies, new attack types via rules and allow their addition into knowledgebase. Study presents results of the various stochastic models used with an aim to improve data security and integrity for networked resources.

References
  1. Aarts, E.H., Korst, J and Van Laarhoven., (1997). Simulated annealing” as in Aarts, E.H and Lenstra, J.K., (eds.) Local Search in combinatorial optimization, John Wiley and Sons.
  2. Abramson, D., Dang, H and Krishnamoorthy, M., (1996). Simulated annealing cooling schedules for school timetabling problem, Asian Operation Research, 3(5), p11-24.
  3. Alpaydin, E., (2010). Introduction to Machine Learning, McGraw Hill publications, ISBN: 0070428077, New Jersey
  4. Al-Anni, M. K. and Sundararajan, V., (2009): Detecting a denial of service via AI tools and GSA, Indian J. of Science, 2(2), p16-21.
  5. Axelsson, S., (2004). Combining a Bayesian Classifier with Visualization: Understanding IDS, VizSEC/DMSEC’04, ACM-1581139748/04/0010.
  6. Bacchus, F., (2010). Constraint satisfaction problem”, Computer Lecture notes, cs.toronto.edu/~ fbacchus/. Last access Feb. 13, 2013.
  7. Bashir, H.A and Neville, R.S., (2013). Hybrid evolutionary computation for continuous optimization, arxiv: 1303.3469, http://arxiv.org>cs
  8. Bayram, H and Sahin, R., (2013). A new simulated annealing approach for the traveling salesman problem, Mathematical and Computational Applications, 18(3), pp 313 – 322.
  9. Brailsford, S., Potts, C.N and Smith, B.M, (1998). Constraint satisfaction problem: algorithms and applications, European J. of Operation Research, 119, p557-581.
  10. Chittur, A., (2001): Model generation for an intrusion detection system via GA, hacktory.cs.columbia.edu/sites/default/files/gaids-thesis01.pdf.
  11. Chou, T.S., Yen K.K and Lou, J., (2008): Network intrusion detection design using feature selection of soft computing paradigms, World Academy of Science, Engineering and Technology 47.
  12. Coddington, P., (2012). Constraint satisfaction problems, Computer Lecture notes, cs.adelaide.edu.au Last accessed Feb 13, 2013.
  13. Crosbie, M., and Spafford, G., (1995): Applying genetic programming to intrusion detection,www.aaai.org/Papers/Symposia/Fall/1995/FS-95-01/FS95-01-001.pdf.
  14. Darrall, H., Jacobson, S.H and Johnson, A.W., (2003). Theory and practice of simulated annealing, Handbook of Metaheuristics, Springer, ISBN: 978-1-4020-7263-5, p287-319.
  15. Diaz-Gomez, P. and Hougen, D., (2005): Improved off-line intrusion detection using a GA, cameron.edu/~pdiaz-go/Art_ICEIS.pdf
  16. Dos Passos, W., (2013). Numerical methods, algorithms and tools in C#, Taylor and Francis Inc., ISBN: 9780849374791.
  17. Fausett, L., (1994):Fundamentals of Neural Networks, Prentice Hall: USA, ISBN: 0133341860.
  18. Gong, R.,Zulkernine, M. and Abolmaesumi, P., (2005):A software implementation of GA based approach to network intrusion detection, www.cse.msu.edu/~cse848/Studentpapers/Tavon_Pourboghrat.pdf
  19. Harrington, P., (2012). Machine Learning in action, Manning publications, ISBN: 9781617290183, New York
  20. Johnson, D., Aragon, C, McGeoch, L and Schevon, C., (1991). Optimization by simulated annealing: an experimental evaluation graph partitioning, Operation Research, 39(3), p865-892
  21. Kandeeban, S. S. and Rajesh, R. S., (2007): GA for framing rules for intrusion detection, J. Comp. Sci and Security, 7(11), p285-290.
  22. Kandeeban, S. S. and Rajesh, R. S., (2010): Integrated intrusion detection system via soft computing, J. Network Security, 10(2), p87
  23. Kayacik, H., Zincir-Heywood, A and Heywood M., (2005): Selecting features for IDS: a feature relevance analysis on KDD 99 dataset, http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.66.7574&rep=rep1&type=pdf
  24. Kirkpatrick, S., (1983). Optimization by simulated annealing, Science, 220, p671-680.
  25. Kitanidis, P and Bras, R., (1980). Real-time forecasting with a conceptual hydrologic model, applications and results, Water Resources, 16(6), pp.1034–1044.
  26. Kurose, J. F. and Ross, K. N., (2010): Computer network a top down approach, Pearson publisher, ISBN-10: 0-13-136548-7.
  27. Lassig, J and Sudholt, D., (2011). Adaptive population model for offspring population and parallel evolutionary algorithms, arxiv: 1102.0588
  28. Lavender, B., (2010): Implementation of GA into IDS and integration into nprobe, http://brie.com/brian/netga/Lavender_Report.pdf.
  29. Li, W, (2004).GA approach to network IDS,security.cse.msstate.edu/docs/Publication/wli/DOECSG2004.pdf
  30. Mitchell, T.M., (1997). Machine Learning, McGraw Hill publications, ISBN: 0070428077, New Jersey.
  31. Newman, M.E, (2003). The structure and function of complex networks. SIAM Reviews, 45(2), p167.
  32. Nikolaev, A.G., Jacobson, S.H., Hall, S.N and Henderson, D., (2011). Framework for analyzing suboptimal performance of local search algorithms, Computation Optimization and Applications, 49(3), p407.
  33. Ojugo, A.A., (2005). Comparative SA model to solving optimization problem – case of virus propagation on time varying networks", Unpublished MSc, Nnamdi Azikiwe University Awka, Nigeria.
  34. Ojugo, A.A., Eboka, A.O and Yoro, R.E., (2007). Hybrid simulated annealing neural network to solving Sudoku, Proceedings of 4th IRDI Conf. on Science Tech, p78, Uyo: Nigeria.
  35. Ojugo, A.A., (2012a). Hybrid artificial neural network gravitational search algorithm for rainfall runoff, Unpublished PhD Thesis, Dept. Computer Science, Ebonyi State University Abakiliki, Nigeria.
  36. Ojugo, A., Eboka, A., Okonta, E., Yoro, R and Aghware, F., (2012b). GA rule-based intrusion detection system, J. of Computing and Information Systems, 3(8), p1182.
  37. Ojugo, A.A., (2013a). Virus propagation on time varying graphs, Technical-Report, Centre for High Performance and Dynamic Computing (CHPDYC), TRON-03-2013-01, Federal University of Petroleum Resources, Nigeria, p24-37.
  38. Ojugo, A.A., and Yoro, R., (2013b). Computational intelligence in stochastic solution for Toroidal Queen task, Progress in Intelligence Computing Applications, 2(1), doi: 10.4156/pica.vol2.issue1.4, p46
  39. Ojugo, A.A., Emudianughe, J., Yoro, R.E., Okonta, E.O and Eboka, A.O., (2013c). Hybrid artificial neural network gravitational search algorithm for rainfall runoff, Progress in Intelligence Computing and Applications, 2(1), doi: 10.4156/pica.vol2.issue1.2, p22.
  40. Olusegun, F., Oluwatobi, O. A. and Adewale O. O., (2010): ID-SOMGA: self organising migrating GA-based solution for Intrusion Detection, Computer and Information Science, 3(4), p80
  41. Perez, M and Marwala, T., (2011). Stochastic optimization for solving Sudoku, Proceeding of IEEE on Evolutionary Computing, p256 – 279.
  42. Perez, M and Marwala, T., (2012). Microarray data feature selection using hybrid genetic algorithm simulated annealing, IEEE conference on Electrical and Electronics Engineers, doi: 10.1109/EEEI.2010.6377146, pp 1 – 5
  43. SalehElmohamed, M.A, Fox. G and Coddington, P., (1998). “A comparison of annealing techniques for academic course scheduling”, Notes on Intelligence Computing, DHCP-045, p1-20. www.dhpc.adelaide.edu.au.
  44. Schafer, J.D., (1985): Multiple objective optimization with vector evaluated Genetic Algorithm, http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.122.5689&rep=rep1&type=pdf.
  45. Shanmugam, B. and Idris, N. B., (2011): Hybrid intrusion detection systems using fuzzy logic, www.intechopen.com/download/pdf/14361.
  46. Sontag, E.D., (1998). “Learning for continuous-time recurrent neural networks”, Systems and Control Letters, 34, pp. 151-158.
  47. Sorkin, G., (1991). Theory and practices of SA on special landscape, PhD thesis, Dept. of Electrical Engineering and Computer Science, University of California, Berkeley.
  48. Thomson, J and Dowsland, K., (1995). General cooling schedules for SA based timetable problems, Proceeding of Practice and Theory of automated timetabling, Edinburg: Napier University, pp421–444 Vollmer, T., Alves-Foss, J. and Manic, M., (2011). Autonomous rule creation for intrusion detection, inl.gov/technicalpublications/Documents/5025964.pdf
Index Terms

Computer Science
Information Sciences

Keywords

Intrusion evolutionary forensic data security adversaries hackers.