We apologize for a recent technical issue with our email system, which temporarily affected account activations. Accounts have now been activated. Authors may proceed with paper submissions. PhDFocusTM
CFP last date
20 December 2024
Reseach Article

Computer-Aided Modeling of Interaction between Aldehyde Dehydrogenase and Garcinia Biflavonoids

by Tomisin Happy Ogunwa
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 179 - Number 35
Year of Publication: 2018
Authors: Tomisin Happy Ogunwa
10.5120/ijca2018916788

Tomisin Happy Ogunwa . Computer-Aided Modeling of Interaction between Aldehyde Dehydrogenase and Garcinia Biflavonoids. International Journal of Computer Applications. 179, 35 ( Apr 2018), 18-25. DOI=10.5120/ijca2018916788

@article{ 10.5120/ijca2018916788,
author = { Tomisin Happy Ogunwa },
title = { Computer-Aided Modeling of Interaction between Aldehyde Dehydrogenase and Garcinia Biflavonoids },
journal = { International Journal of Computer Applications },
issue_date = { Apr 2018 },
volume = { 179 },
number = { 35 },
month = { Apr },
year = { 2018 },
issn = { 0975-8887 },
pages = { 18-25 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume179/number35/29226-2018916788/ },
doi = { 10.5120/ijca2018916788 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-07T00:57:29.525396+05:30
%A Tomisin Happy Ogunwa
%T Computer-Aided Modeling of Interaction between Aldehyde Dehydrogenase and Garcinia Biflavonoids
%J International Journal of Computer Applications
%@ 0975-8887
%V 179
%N 35
%P 18-25
%D 2018
%I Foundation of Computer Science (FCS), NY, USA
Abstract

The Garcinia-derived biflavonoids GB1, GB2, kolaflavanone (together known as kolaviron) and morelloflavone have been reported for various bioactivities including protection of cellular tissues against damages from toxic compounds. In this study, computer-aided procedures were used to model the interaction of these naturally-occurring biflavonoids with aldehyde dehydrogenase (ALDH). This study sought to validate these compounds as potential inhibitors of the protein towards treatment/prevention of ALDH related pathophysiologically-associated diseases. Detailed observation of the results obtained divulged that the Garcinia biflavonoids actually inserted only one of their monoflavonoid subunits into the putative substrate-binding pocket while the other subunit occupied the hydrophobic binding region in a manner that can prevent substrate access. Some amino acid residues found in the protein loop flanking the ligands within the putative binding pocket established interactions with the biflavonoids via hydrophilic bonds. Several hydrophobic interactions between the aromatic rings of the dimeric form of flavonoids and non-polar residues of the protein were observed to play crucial role in stabilizing the biflavonoids within the active site. Phe314 might further participate in π-π stacking with the biflavonoids aromatic rings. The relatively large size of the biflavonoids enhances their occupation of the binding pocket, however having less interference with the solvent-exposed region. The compounds are therefore predicted as unique competitive inhibitors of ALDH.

References
  1. Koppaka, V., Thompson, D.C., Chen, Y., Ellermann, M., Nicolaou, K.C., Juvonen R.O. 2012. Aldehyde dehydrogenase inhibitors: a comprehensive review of the pharmacology, mechanism of action, substrate specificity, and clinical application. Pharmacol. Rev. 64:520-539
  2. Kikonyogo, A., Pietruszko, R. 1996. Aldehyde dehydrogenase from adult human brain that dehydrogenates gamma- aminobutyraldehyde: Purification, characterization, cloning and distribution. Biochem. J. 316:317-324.
  3. Chen, Y.C., Peng, G.S., Tsao, T.P., Wang, M.F., Lu, R.B., Yin, S.J. 2009. Pharmacokinetic and pharmacodynamic basis for overcoming acetaldehyde-induced adverse reaction in Asian alcoholics, heterozygous for the variant ALDH2*2 gene allele. Pharmacogenet Genomics. 19(8):588-99.
  4. Chen, Y., Zhu, J.Y., Hong, K.H., Mikles, D.C., Georg, G.I., Goldstein, A.S., Amory, J.K., Schönbrunn, E. 2018. Structural basis of ALDH1A2 inhibition by irreversible and reversible small molecule inhibitors. ACS Chem Biol. doi: 10.1021/acschembio.7b00685.
  5. Nene, A., Chen, C., Disatnik, M., Cruz, L., Mochly-Rosen, D. 2017. Aldehyde dehydrogenase 2 activation and coevolution of its εPKC-mediated phosphorylation sites. J. Biomed. Sci. 24: 3.
  6. Yao, L., Fan, P., Arolfo, M., Jiang, Z., Olive, M.F., Zablocki, J., Sun, H.L., Chu, N., Lee, J.J., Kim, H.Y., Leung, K., Shryock, J., Blackburn, B., Diamond, I. 2010. Inhibition of aldehyde dehydrogenase-2 suppresses cocaine seeking by generating THP, a cocaine use dependent inhibitor of dopamine synthesis. Nat. Med. 16: 1024–1028.
  7. Grunblatt, E., Riederer, P. 2016. Aldehyde dehydrogenase (ALDH) in Alzheimer's and Parkinson's disease. J. Neural Transm. 123(2): 83-90.
  8. Jiang, F., Qiu, Q., Khanna, A., Todd, N.W., Deepak, J., Xing, L., Wang, H., Liu, Z., Su, Y., Stass, S.A., Katz, R.L. 2009. Aldehyde dehydrogenase 1 is a tumor stem cell-associated marker in lung cancer, Mol. Cancer Res. 7:330-338.
  9. Alnouti, Y., Klaassen, C.D. 2008. Tissue distribution, ontogeny, and regulation of aldehyde dehydrogenase (Aldh) enzymes mRNA by prototypical microsomal enzyme inducers in mice. Toxicol. Sci. 101:51-64.
  10. Ota, N., Ohno, J., Seno, K., Taniguchi, K., Ozeki, S. 2014. In vitro and in vivo expression of aldehyde dehydrogenase 1inoral squamous cell carcinoma. International J. Oncol. 44:435-442.
  11. Januchowski, R., Wojtowicz, K.A., Zabel, M. 2013. The role of aldehyde dehydrogenase (ALDH) in cancer drug resistance. Biomed. Pharmacother. 67: 669-68.
  12. Kolawole, A.N., Akinladejo, V., Elekofehinti, O.O., Akinmoladun, A.C., Kolawole, A.O. 2018. Experimental and Computational Modeling of Interaction of kolaviron-kolaflavanone with Aldehyde dehydrogenase. Bioorg. Chem. doi: https://doi.org/10.1016/j.bioorg.2018.02.012
  13. Farombi, E.O., Owoeye, O. 2011. Antioxidative and chemopreventive properties of Vernonia amygdalina and Garcinia biflavonoid. Int. J. Environ. Res. Public Health. 8, 2533-2555.
  14. Esiegwu, A.C., Okoli, I.C., Emenalom, O.O., Esonu, B.O., Udedibie, A.B.I. 2014. The emerging nutriceutical benefits of the African wonder nut (Garcinia Kola Heckel): A review, Global J. Animal. Sci. Res. 2(2):173-180.
  15. Olivier, T.T., Martin, S., Armel, J.S., Francis, N.T. 2013. Review on traditional uses, phytochemical and pharmacological profiles of Garcinia kola Heckel, Merit Res. J. Med. Med. Sci. 4(11):480-489.
  16. Ijomone, O.M., Obi, A.U. 2013. Kolaviron, isolated from Garcinia kola, inhibits acetylcholinesterase activities in the hippocampus and striatum of wistar rats, Ann. Neurosci. 20(2):42-46.
  17. Okunji, C., Komarnytsky, S., Fear, G., Poulev, A., Ribnicky, D.M., Awachie, P.I., Ito, Y., Raskin, I. 2007. Preparative isolation and identification of tyrosinase inhibitors from the seeds of Garcinia kola by high-speed counter-current chromatography, J. Chromatography A 1151:45-50.
  18. Iwu, M.M., Igboko, O.A., Okunji, C.O., Tempest, M.S. 1990. Antidiabetic and aldose reductase activities of biflavanones of Garcinia kola. J. Pharm. Pharmacol. 42:290-292.
  19. Olaleye, S.B., Farombi, E.O., Adewoye, E.A., Owoyele, B.V., Onasanwo, S.A., Elegbe, R.A. 2000. Analgesic and anti-inflammatory effects of kolaviron (a Garcinia kola seed extract). Afr. J. Biomed. Res. 3: 171-174
  20. Odukanmi, O.A., Oluwole, F.S., Olaleye, S.B. 2014. Effects of kolaviron, a Garcinia Kola biflavonoid, on rat intestinal glucose absorption and alpha amylase inhibitory activities, Arch. Basic App. Med. 2:161-167.
  21. Onasanwo, S.A., Ilenre, K.O., Faborode, S.O. 2015. The impact of kolaviron (a bioflavonoid of Garcinia Kola seed) on depression status in laboratory rodents: Roles of monoaminergic systems, Ann. Depress. Anxiety 2(1):1042.
  22. Farombi, E.O., Tahnteng, J.G., Agboola, A.O., Nwankwo, J.O., Emerole, G.O. 2000. Chemoprevention of 2 acetylaminofluorene-induced hepatotoxicity and lipid peroxidation in rats by kolaviron-a Garcinia kola seed extract. Food Chem. Toxicol. 38:535-541.
  23. Adaramoye, O.A., Nwaneri, V.O., Anyanwu, K.C., Farombi, E.O., Emerole, G.O. 2005. Possible anti-atherogenic effect of kolaviron (A Garcinia kola seed extract) in hypercholesterolemic rats. Clin. Exp. Pharmacol. Physiol. 32(1-2):40-46.
  24. Ogunwa, T.H., Ayenitaju, F.C. 2017. Molecular Binding Signatures of Morelloflavone and Its Naturally Occurring Derivatives on HMG-COA Reductase. International J. Biol. Sci. Appl. 4(5): 74-81
  25. Tuansulong, K., Hutadilok-Towatana, N., Mahabusarakam, W., Pinkaew, D., Fujise, K. 2011. Morelloflavone from Garcinia dulcis as a novel biflavonoid inhibitor of HMG-CoA reductase. Phytother. Res. 25: 424-428.
  26. Gil, B., Sanz, M.J., Terencio, M.C., Gunasegaran, R., Paya, M., Alcaraz, M.J. 1997. Morelloflavone, a novel biflavonoid inhibitor of human secretory phospholipase A2 with anti-inflammatory activity. Biochem. Pharmacol. 53:733-740.
  27. Pereañez, J.A., Patiño, A.C., Núñez, V., Osorio, E. 2014. The biflavonoid morelloflavone inhibits the enzymatic and biological activities of a snake venom phospholipase A2. Chem. Biol. Interact. 220:94-101.
  28. Vanessa, S.G., Jaqueline, P.J., Wagner, A.J., Alyne, A.A., Ingridy, R.C., Diego, M.A., Maria, A.J., Ihosvany, C., Marcos, J.M., Claudio, V.J., Marcelo, H.S. 2015. Morelloflavone and its semisynthetic derivatives as potential novel inhibitors of cysteine and serine proteases. J. Med. Plant Res. 9(13):426-434.
  29. Li, X.C., Joshi, A.S., ElSohly, H.N., Khan, S.I., Jacob, M.R., Zhang, Z., Khan, I.A., Ferreira, D., Walker, L.A., Broedel, S.E. (Jr), Raulli, R.E., Cihlar, R.L. 2002. Fatty acid synthase inhibitors from plants: isolation, structure elucidation and SAR studies. J. Nat. Prod. 65:1909-1914.
  30. Verdi, L.G., Pizzolatti, M.G., Montanher, A.B., Brighente, I.M., Smânia, J.A., Smânia Ed E.,F., Simionatto, E.L., Monache, F.D. 2004. Antibacterial and brine shrimp lethality tests of biflavonoids and derivatives of Rheedia gardneriana. Fitoterapia. 75:360-363.
  31. Lin, Y.M., Anderson, H., Flavin, M.T., Pai, Y.H.S. 1997. In vitro anti-HIV of biflavonoids isolated from Rhus succedanea and Garcinia ultiflora. J. Nat. Prod. 60: 884-888.
  32. Pang, X., Yi, T., Yi, Z., Cho, S.G., Qu, W., Pinkaew, D., Fujise, K., Liu, M. 2009. Morelloflavone, a biflavonoid, inhibits tumor angiogenesis by targeting Rho GTPases and ERK signaling pathways. Cancer Res. 69 (2): 518-525.
  33. Li, X., Ai, H., Sun, D., Twu, T., He, J., Xu, Z., Ding, L., Wang, L. 2016. Anti-tumoral activity of native compound morelloflavone in glioma. Onco. Lett. 12(15):3373-3377. doi: 10.3892/ol.2016.5094
  34. Hutadilok-Towatana, N., Kongkachuay, S., Mahabusarakam, W. 2007. Inhibition of human lipoprotein oxidation by morelloflavone and camboginol from Garcinia dulcis. Nat. Prod. Res. 2007: 21: 655-662.
  35. Gregory, L., Warren, C., Webster, A., AnnaMaria, C., Brian, C., Judith, L., Millard, H.L., Mika, L., Neysa, N., Simon, F.S., Stefan, S., Giovanna, T., Ian, D.W., James, M.W., Catherine, E.P., Martha, S.H. 2006. A critical assessment of docking programs and scoring functions. J. Med. Chem. 49:5912-5931.
  36. Trott, O., Olson, A.J. 2010. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization and multithreading. J. Comput. Chem. 31:455-461.
  37. Seelinger, D., de Groot, B.L. 2010. Ligand docking and binding site analysis with PYMOL and Autodock/Vina. J. Comput. Aided Mol. Des. 24:417-422.
  38. Ogunwa, T.H., Ayenitaju, F.C. 2017. Molecular binding signatures of morelloflavone and its naturally occurring derivatives on HMG-COA reductase. Int. J. Biol. Sci. Appl. 4(5):74-81.
  39. Laskowski, R.A., Swindells, M.B. 2011. LigPlot+: multiple ligand-protein interaction diagrams for drug discovery. J. Chem. Inf. Model. 51(10):2778-86
  40. Keung, W.M. 2003. Anti-dipsotropic isoflavones: the potential therapeutic agents for alcohol dependence. Med. Res. Rev. 23:669-696.
  41. Keung, W.M., Lazo, O., Kunze, L., Vallee, B.L. 1995. Daidzin suppresses ethanol aldehyde dehydrogenase inhibitors 537 consumption by Syrian golden hamsters without blocking acetaldehyde metabolism. Proc. Natl. Acad. Sci. USA. 92:8990-8993.
  42. Lowe, E.D., Gao, G.Y., Johnson, L.N., Keung, W.M. 2008. Structure of daidzin, a naturally occurring anti-alcohol-addiction agent, in complex with human mitochondrial aldehyde dehydrogenase. J. Med. Chem. 51:4482-4487.
  43. Staub, R.E., Quistad, G.B., Casida, J.E. 1998. Mechanism for benomyl action as a mitochondrial aldehyde dehydrogenase inhibitor in mice. Chem. Res. Toxicol. 11: 535-543.
  44. Lamb, A.L., Newcomer, M.E. 1999. The structure of retinal dehydrogenase type II at 2.7 Å resolution: Implications for retinal specificity. Biochem. 38:6003-6011.
  45. Lin, M., Zhang, M., Abraham, M., Smith, S.M., Napoli, J.L. 2003. Mouse retinal dehydrogenase 4 (RALDH4), molecular cloning, cellular expression, and activity in 9-cis-retinoic acid biosynthesis in intact cells. J. Biol. Chem. 278:9856-9861.
  46. Dariusz, P., Michal, L.N., Rafal, A., Krzysztof, G. 2011. Can we trust docking results? Evaluation of seven commonly used programs on PDBbind database. J. Comput. Chem. 32:742-755.
  47. Akintonwa, A., Essien, A.R. 1990. Protective effects of Garcinia kola seed extract against paracetamol-induced hepatotoxicity in rats. J. Ethnopharmacol. 29:207-211.
  48. Olaleye, S.B., Farombi, E.O. 2006. Attenuation of indomethacin- and HCl/ethanol-induced oxidative gastric mucosa damage in rats by kolaviron, a natural biflavonoid of Garcinia kola seed. Phytother. Res. 20:14-20.
  49. Farombi, E.O., Shrotriya, S., Surh, Y.J. 2009. Kolaviron inhibits dimethylnitrosamine- induced liver injury by suppressing COX-2 and iNOS expression via NF-κB and AP-1. Life Sci. 84:149-155.
  50. Alabi, Q.K., Akomolafe, R.O., Olukiran, O.S., Adeyemi, W.J., Nafiu, A.O., Adefisayo, M.A., Omole, J.G., Kajewole, D.I., Odujoko, O.O. 2017. The Garcinia kola biflavonoid kolaviron attenuates experimental hepatotoxicity induced by diclofenac. Pathophysiol. 24(4):281-290.
  51. Ogunwa, T.H. 2018. Ab initio modeling and Garcinia biflavonoids-binding study of Tyrosinase: The signature enzyme of melanogenesis. J. Appl. Bioinfo. Comp. Biol. In press.
  52. Lee, J., Jung, K., Woo, E., Kim, Y. 2008. Docking study of biflavonoids, allosteric inhibitors of protein tyrosine phosphatase 1B. Bull. Korean Chem. Soc. 29(8): 1479-1484.
  53. Sobreira, T.J., Marlétaz, F., Simões-Costa, M., Schechtman, D., Pereira, A.C., Brunet, F., Sweeney, S., Pani, A., Aronowicz, J., Lowe, C.J., Davidson, B., Laudet, V., Bronner, M., de Oliveira, P.S., Schubert, M., Xavier-Neto, J. 2011. Structural shifts of aldehyde dehydrogenase enzymes were instrumental for the early evolution of retinoid-dependent axial patterning in metazoans. Proc. Natl. Acad. Sci. USA. 108(1):226-31.
  54. Lee, S.L., Lee, Y.P., Wu, M.L., Chi, Y.C., Liu, C.M., Lai, C.L., Yin, S.J. 2015. Inhibition of human alcohol and aldehyde dehydrogenases by aspirin and salicylate: assessment of the effects on first-pass metabolism of ethanol. Biochem. Pharmacol. 95(1):71-9.
  55. Luo, M., Tanner, J.J. 2015. Structural basis of substrate recognition by aldehyde dehydrogenase 7A1. Biochemistry. 54(35):5513-22.
Index Terms

Computer Science
Information Sciences

Keywords

Biflavonoids Garcinia species molecular docking Aldose dehydrogenase interaction