We apologize for a recent technical issue with our email system, which temporarily affected account activations. Accounts have now been activated. Authors may proceed with paper submissions. PhDFocusTM
CFP last date
20 November 2024
Reseach Article

Graphs of Permutation Groups

by T. Chalapathi, R. V. M. S. S. Kiran Kumar
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 179 - Number 3
Year of Publication: 2017
Authors: T. Chalapathi, R. V. M. S. S. Kiran Kumar
10.5120/ijca2017915872

T. Chalapathi, R. V. M. S. S. Kiran Kumar . Graphs of Permutation Groups. International Journal of Computer Applications. 179, 3 ( Dec 2017), 14-19. DOI=10.5120/ijca2017915872

@article{ 10.5120/ijca2017915872,
author = { T. Chalapathi, R. V. M. S. S. Kiran Kumar },
title = { Graphs of Permutation Groups },
journal = { International Journal of Computer Applications },
issue_date = { Dec 2017 },
volume = { 179 },
number = { 3 },
month = { Dec },
year = { 2017 },
issn = { 0975-8887 },
pages = { 14-19 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume179/number3/28716-2017915872/ },
doi = { 10.5120/ijca2017915872 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-07T00:54:20.228651+05:30
%A T. Chalapathi
%A R. V. M. S. S. Kiran Kumar
%T Graphs of Permutation Groups
%J International Journal of Computer Applications
%@ 0975-8887
%V 179
%N 3
%P 14-19
%D 2017
%I Foundation of Computer Science (FCS), NY, USA
Abstract

In this paper we introduce and study permutation graphs of permutation groups. Basic, structural and specific properties of these graphs are investigated and characterized. Further, we obtain formulae for enumerating total number of shortest and longest cycles of permutation graphs.

References
  1. Dejter, I., Giudici, R.E.: On Unitary Cayley graphs, JCMCC, 18,121-124.
  2. Brrizbitia, P and Giudici, R.E. 1996, Counting pure k-cycles in sequence of Cayley graphs, Discrete math., 149, 11-18.
  3. Madhavi, L and Maheswari, B.2009, Enumeration of Triangles and Hamilton Cycles in Quadratic residue Cayley graphas, Chamchuri Journal of Mathematics, 1,95-103.
  4. Madhavi, L and Maheswari, B. 2010, Enumeration of Hamilton cycles and triangles in Euler Totient Cayley graph, Graph Theory Notes of New York, LIX, 28-31.
  5. Chalapathi, T., Madhavi, L and Venkataramana, S. 2013, Enumeration of Traingles in a Divisor Cayley Graph. Momona Ethiopian Journal of Science (MEJS). 5, 163-173.
  6. Chalapathi, T., Kiran Kumar R.V.M.S.S. 2015, The Structural Properties of Even Free Graphs. International Journal of Computer Applications. 121, 19-21.
  7. Chartrand,G., Harary,F. 1967, Planner Permutaion Graphs, Ann. Inst. H. Poincare Sect. B(N, S) 3, 433-438.
  8. Harary F. 1969, Graph Theory, Addition-Wesley Publ. Comp., Regarding, Massachusett.
  9. Judson, T.W. 1994, Abstract Algebra, PWS Publishing Company, Boston .
  10. Alan Tucker. 2011, Applied Combinatorics, John Wiley and Sons Pte Ltd, Singapore.
  11. Bondy and J.A., Murty, U.S.R. 2013, Graph Theory. Ane Books-New Delhi.
Index Terms

Computer Science
Information Sciences

Keywords

Permutation groups Even and odd permutation graphs Triangles Hamilton cycles Disjoint Hamilton cycles.