CFP last date
20 January 2025
Reseach Article

Parallel Hill Cipher Encryption Algorithm

by Mais Haj Qasem, Mohammad Qatawneh
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 179 - Number 19
Year of Publication: 2018
Authors: Mais Haj Qasem, Mohammad Qatawneh
10.5120/ijca2018916326

Mais Haj Qasem, Mohammad Qatawneh . Parallel Hill Cipher Encryption Algorithm. International Journal of Computer Applications. 179, 19 ( Feb 2018), 16-24. DOI=10.5120/ijca2018916326

@article{ 10.5120/ijca2018916326,
author = { Mais Haj Qasem, Mohammad Qatawneh },
title = { Parallel Hill Cipher Encryption Algorithm },
journal = { International Journal of Computer Applications },
issue_date = { Feb 2018 },
volume = { 179 },
number = { 19 },
month = { Feb },
year = { 2018 },
issn = { 0975-8887 },
pages = { 16-24 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume179/number19/28976-2018916326/ },
doi = { 10.5120/ijca2018916326 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-07T00:55:51.803384+05:30
%A Mais Haj Qasem
%A Mohammad Qatawneh
%T Parallel Hill Cipher Encryption Algorithm
%J International Journal of Computer Applications
%@ 0975-8887
%V 179
%N 19
%P 16-24
%D 2018
%I Foundation of Computer Science (FCS), NY, USA
Abstract

Cryptography is the discipline of encoding and decoding messages. Cryptography is used frequently in people’s daily lives to keep sensitive information, such as credit card information, safe. Many everyday activities can be easily monitored by unintended third parties via Internet. Hill cipher is a classic cryptography based on linear algebra that is simply a linear transformation represented by a matrix. The encoding and decoding process in Hill cipher involves matrix multiplication, which is potentially time consuming, making it one of the most well-studied problems in this field. In this paper, we implement the message passing interface (MPI) and MapReduce methods to demonstrate their effectiveness in expediting Hill cipher algorithm in parallel algorithms on a multi-core system. Simulation results show that the efficiency rates of MPI and MapReduce are 93.71 % and 53.43 respectively, with a multi-core processor on the large file size, indicating better performances compared with sequential methods.

References
  1. charya, B., Panigrahy, S. K., Patra, S. K., & Panda, G. (2009). Image encryption using advanced hill cipher algorithm. International Journal of Recent Trends in Engineering, 1(1).
  2. Burns, G., Daoud, R., & Vaigl, J. (1994, June). LAM: An open cluster environment for MPI. In Proceedings of supercomputing symposium (Vol. 94, pp. 379-386).
  3. Catalyurek, U. V., & Aykanat, C. (1999). Hypergraph-partitioning-based decomposition for parallel sparse-matrix vector multiplication. IEEE Transactions on Parallel and Distributed Systems, 10(7), 673- 693.
  4. Cannon, Lynn E. A Cellular Computer to Implement the Kalman Filter Algorithm. No. 603-Tl-0769. Montana State Univ Bozeman Engineering Research Labs, 1969.
  5. Coppersmith, D., & Winograd, S. (1987, January). Matrix multiplication via arithmetic progressions. In Proceedings of the nineteenth annual ACM symposium on Theory of computing (pp. 1-6). ACM.
  6. Chatterjee, D., Nath, J., Dasgupta, S., & Nath, A. (2011, June). A new Symmetric key Cryptography Algorithm using extended MSA method: DJSA symmetric key algorithm. In Communication Systems and Network Technologies (CSNT), 2011 International Conference on (pp. 89-94). IEEE.
  7. Dean, G. (2004). J. Dean, S. Ghemawat. Mapreduce: simplified data processing on large clusters, OSDI. USENIX (2004), 10.
  8. Dean, Jeffrey, and Sanjay Ghemawat. "MapReduce: a flexible data processing tool." Communications of the ACM 53.1 (2010): 72-77.
  9. Dekel, Eliezer, David Nassimi, and Sartaj Sahni. "Parallel matrix and graph algorithms." SIAM Journal on computing 10.4 (1981): 657-675.
  10. Fox, Geoffrey C., Steve W. Otto, and Anthony JG Hey. "Matrix algorithms on a hypercube I: Matrix multiplication." Parallel computing 4.1 (1987): 17-31.
  11. Hill, L. S. (1931). Concerning certain linear transformation apparatus of cryptography. The American Mathematical Monthly, 38(3), 135-154.
  12. Hill, L. S. (1929). Cryptography in an algebraic alphabet. The American Mathematical Monthly, 36(6), 306-312.
  13. H. Li, S. Zhang, T. H. Luan, H. Ren, Y. Dai, and L. Zhou, “Enabling efficient publicly verifiable outsourcing computation for matrix multiplication,” in Telecommunication Networks and Applications Conference (ITNAC), 2015 International. IEEE, 2015, pp. 44–50.
  14. Kadhum, M., Qasem, M. H., Sleit, A., & Sharieh, A. (2017, April). Efficient MapReduce Matrix Multiplication with Optimized Mapper Set. In Computer Science On-line Conference (pp. 186-196). Springer, Cham.
  15. Kumar, M., Meena, J., & Vardhan, M. (2017). Privacy preserving, verifiable and efficient outsourcing algorithm for matrix multiplication to a malicious cloud server. Cogent Engineering, (just-accepted), 1295783
  16. Liu, Xiufeng, Nadeem Iftikhar, and Xike Xie. "Survey of real-time processing systems for big data." Proceedings of the 18th International Database Engineering & Applications Symposium. ACM, 2014.
  17. Lee, K. H., & Chiu, P. L. (2012). An extended visual cryptography algorithm for general access structures. ieee transactions on information forensics and security, 7(1), 219-229.
  18. Lv, Zhenhua, et al. "Parallel K-means clustering of remote sensing images based on MapReduce."
  19. Norstad, John. "A mapreduce algorithm for matrix multiplication." 2013-02-19]. http://www. norstad. org/matrix-multiply/index. html (2009).
  20. AL-Laham, M. M. (2015). Encryption-Decryption RGB Color Image Using Matrix Multiplication.
  21. Panigrahy, S. K., Acharya, B., & Jena, D. (2008). Image encryption using self-invertible key matrix of hill cipher algorithm.
  22. Zaharia, Matei, et al. "Job scheduling for multi-user mapreduce clusters." EECS Department, University of California, Berkeley, Tech. Rep. UCB/EECS-2009-55 (2009).
  23. Zhang, S., Li, H., Jia, K., Dai, Y., & Zhao, L. (2016, December). Efficient Secure Outsourcing Computation of Matrix Multiplication in Cloud Computing. In Global Communications Conference (GLOBECOM), 2016 IEEE (pp. 1-6). IEEE.
  24. Azzam Sleit, Wesam AlMobaideen, Mohammad Qatawneh, Heba Saadeh.”2008”. Efficient Processing for Binary Submatrix Matching. American Journal of Applied Sciences 6 (1): 78-88, 2008, ISSN 1546-9239.
  25. Mohammad Qatawneh, Azzam Sleit, Wesam Almobaideen. “2009”. Parallel Implementation of Polygon Clipping Using Transputer. American Journal of Applied Sciences 6 (2): 214-218, 2009. ISSN 1546-9239.
  26. Mohammad Qatawneh. “2011”.Multilayer Hex-Cells: A New Class of Hex-Cell Interconnection Networks for Massively Parallel Systems. Int. J. Communications, Network and System Sciences, 2011, 4, 704-708.
  27. Mais Haj Qasem, Mohammad Qatawneh. “2017”. Parallel Matrix Multiplication for Business Applications. Proceedings of the Computational Methods in Systems and Software. 2017, 24-36.
  28. Azzam Sleit, Wesam Almobaideen, Mohammad Qatawneh, Heba Saadeh. “2008”. Efficient Processing for binary Submatrix matching. American Journal od Applied Science, 2017, 6(1): 78-88.
  29. Ola M. Surakhi, Mohammad Qatawneh, Hussein A. al Ofeishat. “2017”. A parallel Genetic Algorithm
Index Terms

Computer Science
Information Sciences

Keywords

Cryptography Hadoop Hill Cipher MPI MapReduce Matrix Multiplication.