CFP last date
20 January 2025
Reseach Article

An Improved VoIP using Adaptive Multirate Encoder (AMR)

by Mohammed Tee A. B. Michael Asante, Frimpong Twum
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 178 - Number 51
Year of Publication: 2019
Authors: Mohammed Tee A. B. Michael Asante, Frimpong Twum
10.5120/ijca2019919428

Mohammed Tee A. B. Michael Asante, Frimpong Twum . An Improved VoIP using Adaptive Multirate Encoder (AMR). International Journal of Computer Applications. 178, 51 ( Sep 2019), 23-32. DOI=10.5120/ijca2019919428

@article{ 10.5120/ijca2019919428,
author = { Mohammed Tee A. B. Michael Asante, Frimpong Twum },
title = { An Improved VoIP using Adaptive Multirate Encoder (AMR) },
journal = { International Journal of Computer Applications },
issue_date = { Sep 2019 },
volume = { 178 },
number = { 51 },
month = { Sep },
year = { 2019 },
issn = { 0975-8887 },
pages = { 23-32 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume178/number51/30900-2019919428/ },
doi = { 10.5120/ijca2019919428 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-07T00:53:45.307334+05:30
%A Mohammed Tee A. B. Michael Asante
%A Frimpong Twum
%T An Improved VoIP using Adaptive Multirate Encoder (AMR)
%J International Journal of Computer Applications
%@ 0975-8887
%V 178
%N 51
%P 23-32
%D 2019
%I Foundation of Computer Science (FCS), NY, USA
Abstract

The ability to transmit voice traffic over conventional data networks has revolutionized the way we communicate. The question is how to provide voice quality comparable to PSTN networks. For this reason, researchers have looked to understand the entire communication components and path between the source and destination. One way is to introduce QoS mechanisms that prioritize voice or latency sensitive data transmissions but most of these techniques also introduce some amount of delay whereas voice traffic is delay sensitive and a second delay can cause degradation in quality. This study describes a means for transmitting voice traffic over conventional data networks by making use of a variable bit rate encoder while anticipating network congestions in real time in order to actively mitigate delays in voice transmissions thereby achieving improved QoS.

References
  1. Telecommunication Standardization Sector of ITU Rec. G.114. (2003). Series G: Transmission Systems and Media, Digital Systems and Networks.
  2. Jacobson V. & Karels M.J. (1988). Congestion Avoidance Control.
  3. Gonia K. (2004). Latency and QoS for Voice over IP. SANS Institute.
  4. Blake S., Black D., Carlson M., Davies E., Wang Z., & Weiss W. (1998). An Architecture for Differentiated Services: RFC 2475.
  5. Heinanen J., Baker F., Weiss W., & Wroclawski J. (1999). Assured Forwarding PHB Group. RFC 2597.
  6. Ford P., Yavatkar R., Baker F., Zhang L., Speer M., Braden R., Davie B., Wroclawski J., & Felstaine E. (2000). A Framework for Integrated Services Operation over Diffserv Networks RFC 2998.
  7. Wroclawski J. (1997). The Use of RSVP with IETF Integrated Services. RFC 2210
  8. Shenker S., Partridge C., & Guerin R. (1997). Specification of Guaranteed Quality of Service. RFC 2212.
  9. Braden R., Ed., Zhang L., Berson S., Herzog S., & Jamin S. (1997). Resource ReSerVation Protocol (RSVP) - RFC 2205.
  10. Finneran M. F. (2006). Designing MPLS Networks for VoIP.
  11. Singh D. H., Mian M., & Singh J. (2010). Analysis of VoIP Signal Processing for Performance Enhancement.
  12. Horney C. (2000). Quality of Service and Multi-Protocol Label Switching
  13. Ngamwongwattana B. (2008). Effects of Packetization on VoIP Performance. National Electronics and Computer Technology Center (NECTEC).
  14. Gajjar P., Bhatt N., & Kosta Y. (2012). Overall Performance Evaluation of Adaptive Multi Rate 06.90 Speech Codec Based on Code Exited Linear Prediction Algorithm using MATLAB. International Journal of Speech Technology 15 (2), 119-129
  15. Ganiga R., Muniyal B., & Pradeep. (2012). Characteristic Analysis of VoIP Traffic for Wireless Networks in Comparison with CBR using QualNet Network Simulator. International Journal of Computer Applications, Volume 50, No.11, PP 25-31.
  16. Yasukawa K., Forte A. G., & Schulzrinne H. (2007). Distributed Delay Estimation and Call Admission Control in IEEE 802.11 WLANs. IEEE International Conference on Network Protocols, PP 334-335.
  17. Dini P., Baldo N., & Nin-Guerrero J. (2010). Distributed Call Admission Control for VoIP over 802.11 LANs based on Channel Load Estimation. IEEE International Conference on Communications journal, PP 1-6.
  18. Ji-Young J., Dong-Yoon S., & Jung-Ryun L. (2013). VoIP Call Admission Control Scheme Considering Voip on-off Patterns. International Conference on Information Networking (ICOIN), pp. 371 – 374.
  19. Trad A., Ni Q., & Afifi H. (2004). Adaptive VoIP Transmission over Heterogeneous Wired/Wireless. International Workshop on Multimedia Interactive Protocols and Systems.
  20. J. Sjorberg, M. Westerlund, A. Lakaniemi & Q. Xie. (2007). RTP Payload Format and File Storage Format for the Adaptive Multi-Rate (AMR) and Adaptive Multi-Rate Wideband (AMR-WB) Audio Codecs.
  21. 3GPP TS 26.090, "Adaptive Multi-Rate (AMR) speech transcoding",version 4.0.0 (2001-03), 3rd Generation Partnership Project (3GPP).
  22. 3rd Generation Partnership Project (3GPP) TS 26.071 v11.0.0. (2012). Mandatory Speech Codec Speech Processing Functions.
  23. Brakmo L. & Peterson L. (1995). TCP Vegas: End to End Congestion Avoidance on a Global Internet. IEEE Journal on Selected Areas in Communication, Vol 13, no. 8, pg. 1465-1480.
  24. Comer & Douglas. (2000). Internetworking with TCP/IP. Page 226. Upper Saddle River, N.J.: Prentice Hall.
Index Terms

Computer Science
Information Sciences

Keywords

VoIP Quality of Service (QoS) Congestion Control Link Adaptation TCP Vegas AMR Encoder