CFP last date
20 January 2025
Call for Paper
February Edition
IJCA solicits high quality original research papers for the upcoming February edition of the journal. The last date of research paper submission is 20 January 2025

Submit your paper
Know more
Reseach Article

An Implementation of Conjugate Gradient Methods for Estimating Polynomial Models

by Osman O. O. Yousif, Adam Hussein, Abdelrhman Abashar
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 178 - Number 51
Year of Publication: 2019
Authors: Osman O. O. Yousif, Adam Hussein, Abdelrhman Abashar
10.5120/ijca2019919427

Osman O. O. Yousif, Adam Hussein, Abdelrhman Abashar . An Implementation of Conjugate Gradient Methods for Estimating Polynomial Models. International Journal of Computer Applications. 178, 51 ( Sep 2019), 19-22. DOI=10.5120/ijca2019919427

@article{ 10.5120/ijca2019919427,
author = { Osman O. O. Yousif, Adam Hussein, Abdelrhman Abashar },
title = { An Implementation of Conjugate Gradient Methods for Estimating Polynomial Models },
journal = { International Journal of Computer Applications },
issue_date = { Sep 2019 },
volume = { 178 },
number = { 51 },
month = { Sep },
year = { 2019 },
issn = { 0975-8887 },
pages = { 19-22 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume178/number51/30899-2019919427/ },
doi = { 10.5120/ijca2019919427 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-07T00:53:44.610669+05:30
%A Osman O. O. Yousif
%A Adam Hussein
%A Abdelrhman Abashar
%T An Implementation of Conjugate Gradient Methods for Estimating Polynomial Models
%J International Journal of Computer Applications
%@ 0975-8887
%V 178
%N 51
%P 19-22
%D 2019
%I Foundation of Computer Science (FCS), NY, USA
Abstract

Conjugate gradient (CG) methods are one of the most widely used methods for solving nonlinear unconstrained optimization problems, especially of large scale. That is, due to their simplicity and low memory requirement. To analyze the convergence properties of a CG method, it implemented into two line searches; exact and inexact. In this paper, given some data, some CG methods will be used to find a polynomial function that fitting the data. To show the efficiency, a comparison between CG methods and least square method will be done.

References
  1. Abdelwab Kharab and Ronald B. Guenther (2012), An introduction to numerical methods A matlab approach, CRC press.
  2. B. T. Polyak, The conjugate gradient method in extremem problems, USSR Comp. Math. Math. Phys., 9 (1969), pp. 94-112.
  3. E. Polak, Optimization: Algorithms and Consistent Approximations, vol. 124 of Applied Mathematical Sciences, Springer, New York, NY, USA, 1997.
  4. G. Yuan and X. Lu, “A modified PRP conjugate gradient method”, Annals of Operations Research, vol. 166, pp. 73-90, 2009.
  5. L. Zhang, An improved Wei-Yao-Liu nonlinear conjugate gradient method for optimization computation, Appl. Math. Comput. 215 (2009), pp. 2269-2274.
  6. M. R. Hestenes and E. L. Stiefel, Methods of conjugate gradients for solving linear systems, J. Research Nat. Bur. Standards. 49 (1952), pp. 409-436.
  7. Nur Syarafina, M., Mustafa, M., Rivaie, M., Nur Hamizah, A., Norhaslinda Z., Syazni S., Estimating the unemployment rate using least square and conjugate gradient methods. International Journal of Engineering and Technology, 7(2.15), (2018) 94- 97.
  8. Osman, O.,Mamat, M., Abdelrhaman, A., Rivaie, M. (2014).The global convergence properties of a conjugate gradient methods. American Institute of Physics Conference Proceeding, 1602 (286), 286-295.
  9. R. Fletcher, Practical Method of Optimization, Vol. 1, Unconstrained Optimization, John Wiley & Sons, New York, 1987.
  10. R. Fletcher and C. Reeves, Function minimization by conjugate gradients, Comput. J., 7 (1964), pp. 149-154.
  11. Y. Liu, C. Storey, Efficient generalized conjugate gradient algorithms. Part 1: Theory, J. Optimiz. Theory Appl. 69 (1992), pp. 129-137.
  12. Y. H. Dai, Y. Yuan, A nonlinear conjugate gradient method with a strong global convergence property, SIAM J. Optim. 10 (2000), pp. 177-182.
  13. W. W. Hager and H. Zhang, “A new conjugate gradient method with guaranteed descent and an efficient line search,” SIAM Journal on Optimization, vol. 16, no. 1, pp. 170-192, 2005.
  14. Y. Dai, “A nonmonotone conjugate gradient algorithm for unconstrained optimization,” Journal of Systems Science and Complexity, vol. 15, no. 2, pp. 139-145, 2002.
  15. Z. Wei, G. Li, and L. Qi, “New nonlinear conjugate gradient formulas for large-scale unconstrained optimization problems,” Applied Mathematics and Computation, vol. 179, no. 2, pp. 407-430, 2006.
  16. Z. Wei, S. Yao, and L. Liu, “The convergence properties of some new conjugate gradient methods,” Applied Mathematics and Computation, vol. 183, no. 2, pp. 1341-1350, 2006.
Index Terms

Computer Science
Information Sciences

Keywords

Conjugate gradient methods unconstrained optimization least square data fitting.