CFP last date
20 January 2025
Reseach Article

Fruit Disease Classification based on Texture Features

by Ranjit K. N. Naveen C. Chethan H. K.
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 178 - Number 49
Year of Publication: 2019
Authors: Ranjit K. N. Naveen C. Chethan H. K.
10.5120/ijca2019919400

Ranjit K. N. Naveen C. Chethan H. K. . Fruit Disease Classification based on Texture Features. International Journal of Computer Applications. 178, 49 ( Sep 2019), 11-15. DOI=10.5120/ijca2019919400

@article{ 10.5120/ijca2019919400,
author = { Ranjit K. N. Naveen C. Chethan H. K. },
title = { Fruit Disease Classification based on Texture Features },
journal = { International Journal of Computer Applications },
issue_date = { Sep 2019 },
volume = { 178 },
number = { 49 },
month = { Sep },
year = { 2019 },
issn = { 0975-8887 },
pages = { 11-15 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume178/number49/30882-2019919400/ },
doi = { 10.5120/ijca2019919400 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-07T00:53:32.797988+05:30
%A Ranjit K. N. Naveen C. Chethan H. K.
%T Fruit Disease Classification based on Texture Features
%J International Journal of Computer Applications
%@ 0975-8887
%V 178
%N 49
%P 11-15
%D 2019
%I Foundation of Computer Science (FCS), NY, USA
Abstract

Nowadays digitization and automation of machine in agriculture field plays prominent role. In this paper, we have proposed method to classify fruit as diseased and non-diseased. Firstly, we used K means clustering method for segmentation of diseased regions. Later, we used to extract texture features on segmented diseased regions. We have collected fruit diseased images from internet to create dataset and totally we have collect 2500 images from 10 fruit classes. We have conducted extensive experimentation using Probabilistic Neural Network and results shows that proposed method gives better performance compared to SVM and KNN.

References
  1. Shiv Ram Dubey, Pushkar Dixit, Nishant Singh, Jay Prakash Gupta, 2013, “ Infected Fruit Part Detection using K-Means Clustering Segmentation Technique”, International Journal of Artificial Intelligence and Interactive Multimedia, Vol.2, , Page(s): 65-72 .
  2. A. Rocha, C. Hauagge, J. Wainer, and D. Siome, 2010 “Automatic fruit and vegetable classification from images,” Computers and Electronics in Agriculture, Elsevier; vol. 70,. Page(s): 96-104.
  3. R. Gonzalez, R. Woods, Digital Image Processing, 3rd ed., Prentice-Hall, 2007.
  4. Bongani Malinga, Daniela Raicu, Jacob Furst, “ Local vs. Global Histogram-Based Color Image Clustering”
  5. T. Ojala, M. Pietikäinen, and T. T. Mäenpää, “Multiresolution gray-scale and rotation invariant texture classification with Local Binary Pattern,” IEEE Trans. on Pattern Analysis and Machine Intelligence, vol. 24, no. 7, pp. 971-987, 2002.
  6. Q. Li, M. Wang and W. Gu, “Computer Vision Based System for Apple Surface Defect Detection,” Computers and Electronics in Agriculture, vol. 36, pp. 215-223, Nov. 2002.
  7. P. M. Mehl, K. Chao, M. Kim and Y. R. Chen, “Detection of Defects on Selected Apple Cultivars using Hyperspectral and Multispectral Image Analysis,” Applied Engineering in Agriculture, vol. 18, pp. 219-226, 2002.
  8. M. S. Kim, A. M. Lefcourt, Y. R. Chen and Y. Tao, “Automated Detection of Fecal Contamination of Apples Based on Multispectral Fluorescence Image Fusion,” Journal of food engineering, vol. 71, pp. 85-91, 2005.
  9. O. Kleynen, V. Leemans and M. F. Destain, “Development of a Multi- Spectral Vision System for the Detection of Defects on Apples,” Journal of Food Engineering, vol. 69, pp. 41-49, 2005.
  10. T. Ojala, M. Pietikäinen and T. T. Mäenpää, “Multiresolution Gray-Scale and Rotation Invariant Texture Classification with Local Binary Pattern,” IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), vol. 24, no. 7, pp. 971-987, 2002.
  11. C. Bravo, D. Moshou, R. Oberti, J. West, A. McCartney, L. Bodria and H. Ramon, “Foliar Disease Detection in the Field using Optical Sensor Fusion,” Agricultural Engineering International: the CIGR Journal of Scientific Research and Development, vol. 6, pp. 1-14, December 2004.
  12. D. Moshou, C. Bravo, R. Oberti, J. West, L. Bodria, A. McCartney and H. Ramon, “Plant Disease Detection Based on Data Fusion of Hyper-Spectral and Multi-Spectral Fluorescence Imaging using Kohonen Maps,” Real-Time Imaging, vol. 11, no. 2, pp. 75-83, 2005.
  13. L. Chaerle, S. Lenk, D. Hagenbeek, C. Buschmann and D. V. D. Straeten, “Multicolor Fluorescence Imaging for Early Detection of the Hypersensitive Reaction to Tobacco Mosaic Virus,” Journal of Plant Physiology, vol. 164, no. 3, 253-262, 2007.
  14. D. Moshou, C. Bravo, S. Wahlen, J. West, A. McCartney and J. De Baerdemaeker, H. Ramon, “Simultaneous Identification of Plant Stresses and Diseases in Arable Crops using Proximal Optical Sensing and Self- Organising Maps,” Precision Agriculture, vol. 7, no. 3, pp. 149-164, 2006.
  15. H. Z. M. Shafri and N. Hamdan, “Hyperspectral Imagery for Mapping Disease Infection in Oil Palm Plantation using Vegetation Indices and Red Edge Techniques,” American Journal of Applied Sciences, vol. 6, no. 6, pp. 1031-1035, 2009.
  16. J. Qin, F. Burks, M. A. Ritenour and W. G. Bonn, “Detection of Citrus Canker using Hyper-Spectral Reflectance Imaging with Spectral Information Divergence,” Journal of Food Engineering, vol. 93, no. 2, pp. 183-191, 2009.
  17. F. Spinelli, M. Noferini and G. Costa, “Near Infrared Spectroscopy (NIRs): Perspective of Fire Blight Detection in Asymptomatic Plant Material,” Proc. 10th International Workshop on Fire Blight, Acta Horticulturae 704, 2006, pp. 87-90.
  18. D. E. Purcell, M.G. O‟Shea, R. A. Johnson and S. Kokot, “Near-Infrared Spectroscopy for the Prediction of Disease Rating for Fiji Leaf Gall in Sugarcane Clones,” Applied Spectroscopy, vol. 63, no.4, pp. 450-457, 2009.
  19. L. G. Marcassa, M. C. G. Gasparoto, J. Belasque Junior, E. C. Lins, F. Dias Nunes and V. S. Bagnato, “Fluorescence Spectroscopy Applied to Orange Trees,” Laser Physics, vol. 16, no. 5, pp. 884-888, 2006.
  20. L. Belasque, M. C. G. Gasparoto and L. G. Marcassa, “Detection of Mechanical and Disease Stresses in Citrus Plants by Fluorescence Spectroscopy,” Applied Optics, vol. 7, no. 11, pp. 1922-1926, 2008.
  21. E. C. Lins, J. Belasque Junior and L. G. Marcassa, “Detection of Citrus Canker in Citrus Plants using Laser Induced Fluorescence Spectroscopy,” Precision Agriculture, vol. 10, pp. 319-330, 2009. International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056 Volume: 03 Issue: 03 | Mar-2016 www.irjet.net p-ISSN: 2395-0072 © 2016, IRJET | Impact Factor value: 4.45 | ISO 9001:2008 Certified Journal | Page 729
  22. C. M. Yang, C. H. Cheng and R. K. Chen, “Changes in Spectral Characteristics of Rice Canopy Infested with Brown Planthopper and Leaffolder,” Crop Science, vol. 47, pp. 329-335, 2007.
  23. S. Delalieux, J. van Aardt, W. Keulemans, E. Schrevens and P. Coppin, “Detection of Biotic Stress (Venturia Inaequalis) in Apple Trees using Hyper-Spectral Data: Non-Parametric Statistical Approaches and Physiological Implications,” European Journal of Agronomy, vol. 27, no. 1, pp. 130-143, 2007.
  24. B. Chen, K. Wang, S. Li, J. Wang, J. Bai, C. Xiao and J. Lai, “Spectrum Characteristics of Cotton Canopy Infected with Verticillium Wilt and Inversion of Severity Level,” Computer and Computing Technologies in Agriculture, vol. 2, pp. 1169-1180, 2008.
  25. Y. H. Choi, E. C. Tapias, H. K. Kim, A. W. M. Lefeber, C. Erkelens, J. T. J. Verhoeven, J. Brzin, J. Zel and R. Verpoorte, “Metabolic Discrimination of Catharanthus Roseus Leaves Infected by Phytoplasma using 1H-NMR Spectroscopy and Multivariate Data Analysis,” Plant Physiology, vol. 135, pp. 2398-2410, 2004.
  26. F. Hahn, “Actual Pathogen Detection: Sensors and Algorithms—A Review,” Algorithms, vol. 2, no. 1, pp. 301- 338, 2009.
  27. S. Sankarana, A. Mishraa, R. Ehsania and C. Davisb, “A Review of Advanced Techniques for Detecting Plant Diseases” Computers and Electronics in Agriculture, vol. 72, pp. 1-13, 2010.
Index Terms

Computer Science
Information Sciences

Keywords

Fruit disease K-Means Texture LBP Neural Network