CFP last date
20 January 2025
Reseach Article

Ambient Intelligence for Rehabilitation: A Survey

by Asmita Gorave
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 178 - Number 38
Year of Publication: 2019
Authors: Asmita Gorave
10.5120/ijca2019919250

Asmita Gorave . Ambient Intelligence for Rehabilitation: A Survey. International Journal of Computer Applications. 178, 38 ( Aug 2019), 1-3. DOI=10.5120/ijca2019919250

@article{ 10.5120/ijca2019919250,
author = { Asmita Gorave },
title = { Ambient Intelligence for Rehabilitation: A Survey },
journal = { International Journal of Computer Applications },
issue_date = { Aug 2019 },
volume = { 178 },
number = { 38 },
month = { Aug },
year = { 2019 },
issn = { 0975-8887 },
pages = { 1-3 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume178/number38/30782-2019919250/ },
doi = { 10.5120/ijca2019919250 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-07T00:54:03.258178+05:30
%A Asmita Gorave
%T Ambient Intelligence for Rehabilitation: A Survey
%J International Journal of Computer Applications
%@ 0975-8887
%V 178
%N 38
%P 1-3
%D 2019
%I Foundation of Computer Science (FCS), NY, USA
Abstract

Rehabilitation is defined as a set of measures that assist individuals who experience, or are likely to experience, disability to achieve and maintain optimal functioning in interaction with their environments. Ambient Intelligence (AmI) refers to a digital environment that proactively, but sensibly, supports people in their daily lives. AmI is useful in order to rehabilitate patients. In this paper, a survey of AmI for rehabilitation is presented.

References
  1. World Health Organization, Chapter 4- Rehabilitation, https://www.who.int/disabilities/world_report/2011/chapter4.pdf?ua=1.
  2. Cancer.Net, https://www.cancer.net/survivorship/follow-care-after-cancer-treatment/rehabilitation.
  3. Fariba Sadri, “Ambient Intelligence: A Survey”, ACM Computing Surveys (CSUR), 2011.
  4. A Gaggioli, “Optimal Experince in Ambient Intelligence”, Ambient Intelligence 35 G. Riva, F. Vatalaro, F. Davide, M. Alcañiz (Eds.), pp. 35-43, 2005.
  5. G. Acampora, D.J. Cook, P.Rashidi, A.V. Vasilakos, “A Survey on Ambient Intelligence in Health Care”, Proc. IEEE Inst Electr Electron Eng, Vol. 101, No.12, pp. 2470-2494, 2013
  6. G. Riva, “Ambient Intelligence in Health Care”, CyberPsychology and Behavior, Vol.6, No.3, pp. 295-300, 2003.
  7. Ducatel, K., Bogdanowicz, M., Scapolo, F., et al. “Scenarios for ambient intelligence in 2010” (ISTAG).
  8. T. Kleinberger, M. Becker, E. Ras, A. Holzinger, P. Müller, “Ambient Intelligence in Assisted Living: Enable Elderly People to Handle Future Interfaces”, Springer-Verlag Berlin Heidelberg , pp. 103-112, 2007.
  9. P. L. Emiliani, C. Stephanidis, “Universal access to ambient intelligence environments: Opportunities and challenges for people with disabilities”, IBM Systems Journals, Vol.44, No.3, pp. 605-619, 2005.
  10. J.Nehmer, A. Karshmer, M. Becker, R. Lamm, “Living Assistance Systems - An Ambient Intelligence Approach –“, ICSE, Shanghai, May 24-26, 2006.
  11. S. Patel, H. Park, P. Bonato, L. Chan, and M. Rodgers, ‘‘A review of wearable sensors and systems with application in rehabilitation,’’ J. NeuroEng. Rehabil., vol. 9, no. 1, 2012.
  12. B. P. Jarochowski, S. Shin, D. Ryu, and H. Kim, ‘‘Ubiquitous rehabilitation center: An implementation of a wireless sensor network based rehabilitation management system,’’ in Proc. Int. Conf. Technol., Washington, DC, USA, 2007, Conv. Inf. pp. 2349–2358.
  13. E. Piotrowicz, A. Jasionowska, M. Banaszak-Bednarczyk, J. Gwilkowska and R. Piotrowicz, ‘‘ECG telemonitoring during home-based cardiac rehabilitation in heart failure patients,’’ J. Telemed. Telecare, vol. 18, no. 4, pp. 193–197, 2012.
  14. A. Helmer, B. Song, W. Ludwig, M. Schulze, M. Eichelberg, A. Hein, U. Tegtbur, R. Kayser, R. Haux, and M. Marschollek, ‘‘A sensor-enhanced health information system to support automatically controlled exercise training of COPD patients,’’ in Proc. 4th Int. Conf. Perv. Comput. Technol. Healthcare, Mar. 2010.
  15. J. Winters and Y. Wang, ‘‘Wearable sensors and telerehabilitation,’’ IEEE Eng. Med. Biol. Mag., vol. 22, no. 3, pp. 56–65, May–Jun. 2003.
  16. C. Poon, Y.-T. Zhang, and S.-D. Bao, ‘‘A novel biometrics method to secure wireless body area sensor networks for telemedicine and m-health,’’ IEEE ommun. Mag., vol. 44, no. 4, pp. 73–81, Apr. 2006.
  17. C.Roda, A. Rodriguez, V. Lopez-Jaquero, E. Navarro, P.Gonzalez, “A Multi-agent System for Acquired Brain Injuri rehabilitation in Ambient Intelligence Environment”, Nurocomputing, Vol. 231, pp.11-18, 2017.
  18. C.Roda, A. Rodriguez, V. Lopez-Jaquero, E. Navarro, P.Gonzalez, “A Multi-agent System in Ambient intelligence for the Physical Rehabilitation of Older People”, Trends in Practical Applications of Agents, Multi-Agent Systems and Sustainability. Advances in Intelligent Systems and Computing, vol 372. Springer, pp. 113-123, 2015.
  19. M. Korman, P. L. Weiss & R. Kizony (2016) Living Labs: overview of ecological approaches for health promotion and rehabilitation, Disability and Rehabilitation, Vol. 38 No.7, pp. 613-619, 2016.
  20. M. Oliver, P. González, F. Montero , J.P. Molina, A. Fernández-Caballero, “Smart Computer-Assisted Cognitive Rehabilitation for the Ageing Population.”, In: Lindgren H. et al. (eds) Ambient Intelligence- Software and Applications – 7th International Symposium on Ambient Intelligence (ISAmI 2016). ISAmI 2016. Advances in Intelligent Systems and Computing, vol 476. Springer, pp. 197-205, 2016.
  21. D. Monekosso, F. Florez-Revuelta and P. Remagnino, “Ambient Assisted Living”, IEEE, pp.1541-1672, 2015
  22. C. Ramírez-Fernández et al., “GoodVybesConnect: A Real-Time Haptic Enhanced Tele-Rehabilitation System for Massage Therapy”. In: García C., Caballero-Gil P., Burmester M., Quesada-Arencibia A. (eds) Ubiquitous Computing and Ambient Intelligence. UCAmI 2016. Lecture Notes in Computer Science, vol 10069. Springer, pp. 487-496, 2016.
  23. P. Saini, R. Willmann, R. Huurneman, G. Lanfermann, J. te Vrugt, S. Winter, and J. Buurke, ‘‘Philips stroke rehabilitation exerciser: A usability test,’’ in Proc. IASTED Int. Conf. Telehealth/Assistive Technol., Anaheim, CA, USA, 2008, pp. 116–122.
Index Terms

Computer Science
Information Sciences

Keywords

Ambient Intelligence Rehabilitation Health care Therapy