CFP last date
20 February 2025
Reseach Article

An Automated Plant Pot Controlled via the Internet based on Arduino Applications

by A. Chatzopoulos, M. Papoutsidakis, Giannis Sofianos, Dimitrios Piromalis
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 178 - Number 25
Year of Publication: 2019
Authors: A. Chatzopoulos, M. Papoutsidakis, Giannis Sofianos, Dimitrios Piromalis
10.5120/ijca2019919048

A. Chatzopoulos, M. Papoutsidakis, Giannis Sofianos, Dimitrios Piromalis . An Automated Plant Pot Controlled via the Internet based on Arduino Applications. International Journal of Computer Applications. 178, 25 ( Jun 2019), 26-30. DOI=10.5120/ijca2019919048

@article{ 10.5120/ijca2019919048,
author = { A. Chatzopoulos, M. Papoutsidakis, Giannis Sofianos, Dimitrios Piromalis },
title = { An Automated Plant Pot Controlled via the Internet based on Arduino Applications },
journal = { International Journal of Computer Applications },
issue_date = { Jun 2019 },
volume = { 178 },
number = { 25 },
month = { Jun },
year = { 2019 },
issn = { 0975-8887 },
pages = { 26-30 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume178/number25/30693-2019919048/ },
doi = { 10.5120/ijca2019919048 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-07T00:51:25.898220+05:30
%A A. Chatzopoulos
%A M. Papoutsidakis
%A Giannis Sofianos
%A Dimitrios Piromalis
%T An Automated Plant Pot Controlled via the Internet based on Arduino Applications
%J International Journal of Computer Applications
%@ 0975-8887
%V 178
%N 25
%P 26-30
%D 2019
%I Foundation of Computer Science (FCS), NY, USA
Abstract

The aim of this paper is to developed a low-cost Arduino based automatic pot that performs the following functions: (i) monitor plant's living conditions, such as temperature, humidity, environment, and soil moisture, (ii) send plant’s collected data via the Internet to a properly configured webpage so the user can be able to remotely monitor them, (iii) automatic control plant soil’s humidity to activate automatic watering when humidity levels reach minimum set values, (iv) remote and/or manual control of the plant’s lighting and watering. Project’s main purpose is to absolve the user from his daily employment for the plant’s maintenance and strengthen plant living conditions for its optimal growth while keeping equipment cost at a minimum. An Arduino Mega 2560 is selected to operate as a plant pot’s data logger, an automation control unit and a web server [1], [2]. An Ethernet shield attached on it provides the necessary hardware to connect the microcontroller (MCU) to the Internet. Arduino webpage’s code and data acquisition are stored in a micro SD card attached to shields' card slot. Appropriate temperature and humidity sensors connected to Arduino used for data acquisition to later forwarded as XML files to the webpage.

References
  1. M. Papoutsidakis, A. Chatzopoulos, K. Kalovrektis, and C. Drosos, “A Brief Guide for the Continuously Evolving μ Controller Raspberry PI Mod . B,” Int. J. Comput. Appl., vol. 176, no. 8, pp. 30–33, 2017.
  2. G. Vordos, A. Chatzopoulos, M. Papoutsidakis, and D. Piromalis, “Balance Control of a Small Scale Sphere with an Innovative Android Application,” J. Multidiscip. Eng. Sci. Technol., vol. 5, no. 10, pp. 8957–8963, 2018.
  3. N.-L. Ada et al., “Light-scattering shade net increases branching and flowering in ornamental pot plants,” J. Hortic. Sci. Biotechnol., vol. 83, no. 1, pp. 9–14, Jan. 2008.
  4. D. Kanjilal, D. Singh, R. Reddy, and J. Mathew, “Smart Farm: Extending Automation To The Farm Level,” Int. J. Sci. Technol. Res., vol. 3, no. 7, pp. 109–113, 2014.
  5. M. Papoutsidakis, A. Chatzopoulos, D. Piromalis, and E. Symeonaki, “A Summary of Future Trends in Automation Industrial Processes,” Int. J. Eng. Sci. Invent., vol. 7, no. 10, pp. 48–55, 2018.
  6. M. R. Sabzalian et al., “High performance of vegetables, flowers, and medicinal plants in a red-blue LED incubator for indoor plant production,” Agron. Sustain. Dev., vol. 34, no. 4, pp. 879–886, 2014.
  7. M. Papoutsidakis, A. Chatzopoulos, C. Drosos, and K. Kalovrektis, “An Arduino Family Controller and its Interactions via an Intelligent Interface,” Int. J. Comput. Appl., vol. 179, no. 30, pp. 5–8, 2018.
  8. Arduino, “Arduino Ethernet Shield,” Arduinio Comunicación, 2018. [Online]. Available: https://www.arduino.cc/en/Main/ArduinoEthernetShieldV1. [Accessed: 01-Mar-2019].
  9. A. Xatzopoulos, M. Papoutsidakis, and G. Chamilothoris, “Mobile Robotic Platforms as Educational Tools in Mechatronics Engineering,” in International Scientific Conference eRA – 8, 2013, pp. 41–51.
  10. Arduino, “Arduino Libraries,” 2015. [Online]. Available: https://www.arduino.cc/en/reference/libraries. [Accessed: 01-Mar-2019].
  11. Arduino, “Arduino - SD,” 2016. [Online]. Available: https://www.arduino.cc/en/Reference/SD. [Accessed: 01-Mar-2019].
  12. S. Electronics, “Basic Arduino Web Server,” 2013. [Online]. Available: https://startingelectronics.org/tutorials/arduino/ethernet-shield-web-server-tutorial/basic-web-server/. [Accessed: 01-Mar-2019].
  13. G. Vasilakis, “How to use DHT-11 sensor,” 2013. [Online]. Available: http://www.ardumotive.com/how-to-use-dht-11-sensor-gr.html. [Accessed: 01-Mar-2019].
  14. CircuitsToday, “Arduino & Soil Moisture Sensor-Interfacing Tutorial,” 2018. [Online]. Available: http://www.circuitstoday.com/arduino-soil-moisture-sensor. [Accessed: 01-Mar-2019].
  15. M. Electronics, “DHT11 Humidity & Temperature Sensor Datasheet,” 2018. [Online]. Available: https://www.mouser.com/ds/2/758/DHT11-Technical-Data-Sheet-Translated-Version-1143054.pdf. [Accessed: 01-Apr-2019].
  16. Eprolabs, “Moisture Sensor - ePro Labs WiKi,” 2016. [Online]. Available: https://wiki.eprolabs.com/index.php?title=Moisture_Sensor. [Accessed: 01-Mar-2019].
  17. V. Mavrovounioti, A. Chatzopoulos, M. Papoutsidakis, and D. Piromalis, “Implementation of an 2-wheel Educational Platform for STEM Applications,” J. Multidiscip. Eng. Sci. Technol., vol. 5, no. 10, pp. 8944–8948, 2018.
  18. M. Papoutsidakis, E. Symeonaki, A. Chatzopoulos, and D. Piromalis, “Iot Design To Support Wireless Sensor Networks And Data Transmission,” Int. J. Eng. Sci. Invent., vol. 7, no. 10, pp. 54–62, 2018.
  19. M. Papoutsidakis, R. Tanwar, A. Chatzopoulos, and D. Tseles, “Custom Made Embedded Automation Systems For Smart Homes - Part 2 : The Implementation,” Int. J. Eng. Appl. Sci. Technol., vol. 2, no. 5, pp. 16–19, 2017.
  20. Arduino, “Arduino - SPI,” Arduino,[Online]. Available: https://www.arduino.cc/en/reference/SPI, 2015. [Online]. Available: https://www.arduino.cc/en/Reference/SPI. [Accessed: 01-Mar-2019].
  21. Arduino, “Arduino Ethernet,” 2015. [Online]. Available: https://www.arduino.cc/en/Reference/Ethernet. [Accessed: 01-Mar-2019].
  22. M. Papoutsidakis, A. Chatzopoulos, C. Drosos, and D. Piromalis, “A System for Distance Control and GPS Mapping for Automotive Applications,” J. Multidiscip. Eng. Sci. Technol., vol. 5, no. 10, pp. 8949–8952, 2018.
  23. S. Melkonian, A. Chatzopoulos, M. Papoutsidakis, and D. Piromalis, “Remote Control via Android for a Small Vehicle ’ s 2-Wheels Balancing,” J. Multidiscip. Eng. Sci. Technol., vol. 5, no. 10, pp. 8964–8967, 2018.
  24. M. Papoutsidakis, A. Chatzopoulos, D. Piromalis, and D. Tseles, “A 4-DOF Robotic Arm - Kinematics and Implementation as Case Study in Laboratory Environment,” Int. J. Comput. Appl., vol. 176, no. 8, pp. 34–38, 2017.
Index Terms

Computer Science
Information Sciences

Keywords

Arduino Automated pot IοT Internet of Things Internet