CFP last date
20 February 2025
Reseach Article

Classification of Dermoscopy Images for Early Detection of Skin Cancer – A Review

by Ebrahim Mohammed Senan, Mukti E. Jadhav
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 178 - Number 17
Year of Publication: 2019
Authors: Ebrahim Mohammed Senan, Mukti E. Jadhav
10.5120/ijca2019918986

Ebrahim Mohammed Senan, Mukti E. Jadhav . Classification of Dermoscopy Images for Early Detection of Skin Cancer – A Review. International Journal of Computer Applications. 178, 17 ( Jun 2019), 37-43. DOI=10.5120/ijca2019918986

@article{ 10.5120/ijca2019918986,
author = { Ebrahim Mohammed Senan, Mukti E. Jadhav },
title = { Classification of Dermoscopy Images for Early Detection of Skin Cancer – A Review },
journal = { International Journal of Computer Applications },
issue_date = { Jun 2019 },
volume = { 178 },
number = { 17 },
month = { Jun },
year = { 2019 },
issn = { 0975-8887 },
pages = { 37-43 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume178/number17/30629-2019918986/ },
doi = { 10.5120/ijca2019918986 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-07T00:50:42.830749+05:30
%A Ebrahim Mohammed Senan
%A Mukti E. Jadhav
%T Classification of Dermoscopy Images for Early Detection of Skin Cancer – A Review
%J International Journal of Computer Applications
%@ 0975-8887
%V 178
%N 17
%P 37-43
%D 2019
%I Foundation of Computer Science (FCS), NY, USA
Abstract

Early diagnosis of skin cancer is essential health requirement for the patient and a critical task for the dermatologist. The factual thinking is that the chance of patient’s survival is high if diagnosed early. Analysis of the skin images and dermoscopy is a mandatory for medical professionals to take appropriate decision on treatment. A number of methods have been researched to use automated and computerized system for skin diseases image processing. Various dermoscopy image processing techniques have been reviewed to explore the possible solution to skin diseases and to select an appropriate method for early detection7 of skin diseases. This review work will be a pathway to scientist, research scholars and medical practitioners.

References
  1. Pomponiu, V., Nejati, H., & Cheung, N. M. (2016, September). Deepmole: Deep neural networks for skin mole lesion classification. In 2016 IEEE International Conference on Image Processing (ICIP) (pp. 2623-2627). IEEE.
  2. Sheha, M. A., Mabrouk, M. S., & Sharawy, A. (2012). Automatic detection of melanoma skin cancer using texture analysis. International Journal of Computer Applications, 42(20), 22-26.
  3. Ferreira, P. M., Mendonça, T., Rozeira, J., & Rocha, P. (2012, May). An annotation tool for dermoscopy image segmentation. In Proceedings of the 1st International Workshop on Visual Interfaces for Ground Truth Collection in Computer Vision Applications (p. 5). ACM.
  4. Nasir, M., Attique Khan, M., Sharif, M., Lali, I. U., Saba, T., & Iqbal, T. (2018). An improved strategy for skin lesion detection and classification using uniform segmentation and feature selection based approach. Microscopy research and technique, 81(6), 528-543.
  5. Andre Esteval et al (2017) Dermatologist-level classification of skin cancer with deep neural networks doi:10.1038/nature21056
  6. Abbas, Q., Garcia, I. F., Emre Celebi, M., Ahmad, W., & Mushtaq, Q. (2013). A perceptually oriented method for contrast enhancement and segmentation of dermoscopyimages. SkinResearchand Technology, 19(1), e490-e497.
  7. Ferreira, P. M., Mendonça, T., & Rocha, P. (2013, June). A wide spread of algorithms for automatic segmentation of dermoscopy images. In Iberian Conference on Pattern Recognition and Image Analysis (pp. 592-599). Springer, Berlin, Heidelberg.
  8. Silva, C. S., & Marcal, A. R. (2013). Colour-based dermoscopy classification of cutaneous lesions: an alternative approach. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization, 1(4), 211-224.
  9. Mendonça, T., Ferreira, P. M., Marques, J. S., Marcal, A. R., & Rozeira, J. (2013, July). PH 2-A dermoscopy image database for research and benchmarking. In 2013 35th annual international conference of the IEEE engineering in medicine and biology society (EMBC) (pp. 5437-5440). IEEE.
  10. Yap, J., Yolland, W., & Tschandl, P. (2018). Multimodal skin lesion classification using deep learning. Experimental dermatology, 27(11), 1261-1267.
  11. Jaworek-Korjakowska, J., & Tadeusiewicz, R. (2015, August). Determination of border irregularity in dermoscopy color images of pigmented skin lesions. In Conference proceedings:... Annual InternationalConference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual Conference (Vol. 2015, pp. 2665- 2668).
  12. Dash, S., Senapati, M. R., & Jena, U. R. (2018). K- NN based automated reasoning using bilateral filter based texture descriptor for computing texture classification. Egyptian Informatics Journal, 19(2), 133-144..
  13. Ruela, M., Barata, C., Marques, J. S., & Rozeira, J. (2017). A system for the detection of melanomas in dermoscopy images using shape and symmetry features. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization, 5(2), 127-137.
  14. Barhoumi, W., & Baâzaoui, A. (2014). Pigment network detection in dermatoscopic images for melanoma diagnosis. Irbm, 35(3), 128-138.
  15. Aswani VS., Hema S. (2017). ADVANCED MELANOMA DETECTION USING ABCD RULE. ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-4,ISSUE-12, 2017
  16. Afifi, A., & Amin, K. M. (2017, December). An efficient system for Melanoma diagnosis in dermoscopy images. In 2017 12th International Conference on Computer Engineering and Systems (ICCES) (pp. 58-65). IEEE.
  17. Chakraborty, S., Mali, K., Banerjee, S., Roy, K., Saha, D., Chatterjee, S., ... & Majumder, S. (2017, November). Bag-of-features based classification of dermoscopy images. In 2017 4th International Conference on Opto-Electronics and Applied Optics (Optronix) (pp. 1-6). IEEE.
  18. Oliveira, R. B., Pereira, A. S., & Tavares, J. M. R. (2018). Computational diagnosis of skin lesions from dermoscopy images using combined features. Neural Computing and Applications, 1-21.
  19. Nezhadian, F. K., & Rashidi, S. (2017, October). Melanoma skin cancer detection using color and new texture features. In 2017 Artificial Intelligence and Signal Processing Conference (AISP) (pp. 1-5). IEEE.
  20. Barata, C., Marques, J. S., & Mendonça, T. (2013, June). Bag-of-features classification model for the diagnose of melanoma in dermoscopy images using color and texture descriptors. In International Conference Image Analysis and Recognition (pp. 547-555). Springer, Berlin, Heidelberg.
  21. M.E. Celebi, el al. "A methodological approach to the classification of dermoscopy images," Computerized Medical Imaging and Graphics, vol. 31. no. 6, pp. 362-373, 2006.
  22. Okuboyejo, Damilola A., Oludayo O. Olugbara, and Solomon A. Odunaike. "Automating skin disease diagnosis using image classification." Proceedings of theWorld Congress on Engineering and Computer Science. Vol. 2. 2013.
  23. Abbas, Qaisar, et al. "Unified approach for lesion border detection based on mixture modeling and local entropy thresholding." Skin Research and Technology 19.3 (2013): 314-319.
  24. Oliveira, Roberta B., et al. "A computational approach for detecting pigmented skin lesions in macroscopic images." Expert Systems with Applications 61 (2016): 53-63.
  25. Kasmi, Reda, and Karim Mokrani. "Classification of malignant melanoma and benign skin lesions: implementation of automatic ABCD rule." IET Image Processing 10.6 (2016): 448-455.
  26. Barata, Catarina, et al. "Two systems for the detection of melanomas in dermoscopy images using texture and color features." IEEE Systems Journal 8.3 (2014): 965-979.
  27. Abuzaghleh, Omar, Buket D. Barkana, and Miad Faezipour. "Noninvasive real-time automated skin lesion analysis system for melanoma early detection and prevention." IEEE journal of translational engineering in health and medicine 3 (2015): 1-12.
  28. Nasr-Esfahani, Ebrahim, et al. "Melanoma detection by analysis of clinical images using convolutional neural network." Engineering in Medicine and Biology Society (EMBC), 2016 IEEE 38th Annual International Conference of the. IEEE, 2016.
  29. Cavalcanti, P. G., Scharcanski, J., & Baranoski, G.V. (2013). A two-stage approach for discriminating melanocytic skin lesions using standard cameras. Expert Systems with Applications, 40(10), 4054-4064.
  30. Celebi, M. Emre, and Azaria Zornberg. "Automated quantification of clinically significant colors in dermoscopy images and its application to skin lesion classification." IEEE systems journal 8.3 (2014): 980-984.
  31. Barata, C., Figueiredo, M. A., Celebi, M. E., & Marques, J. S. (2014, May). Color identification in dermoscopy images using gaussian mixture models. In 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (pp. 3611-3615). IEEE.
  32. Goel, R., & Singh, S. (2015). Skin cancer detection using glcm matrix analysis and back propagation neural network classifier. International Journal of Computer Applications, 112(9).
  33. Riaz, Farhan, et al. "Active Contours Based Segmentation and Lesion Periphery Analysis For Characterization of Skin Lesions in Dermoscopy Images." IEEE Journal of Biomedical and Health Informatics (2018).
  34. Abbas, Q., Emre Celebi, M., Garcia, I. F., & Ahmad, W. (2013). Melanoma recognition framework based on expert definition of ABCD for dermoscopy images. Skin Research and Technology, 19(1), e93-e102.
  35. Jaisakthi, S. M., Mirunalini, P., & Aravindan, C. (2018). Automated skin lesion segmentation of dermoscopy images using GrabCut and k-means algorithms. IET Computer Vision, 12(8), 1088-1095.
  36. Suryapraba, M., Rajanarayanee, G., Kumari, P., & Santhi, P. (2015). Analysis of Skin Cancer Classification Using GLCM Based On Feature Extraction in Artificial Neural Network. International Journal of Emerging Technology in Computer Science & Electronics, 13(4).
  37. Al-Masni, M. A., Al-antari, M. A., Choi, M. T., Han, S. M., & Kim, T. S. (2018). Skin lesion segmentation in dermoscopy images via deep full resolution convolutional networks. Computer methods and programs in biomedicine, 162, 221-231.
  38. Mustafa, S., & Kimura, A. (2018, January). A SVM-based diagnosis of melanoma using only useful image features. In 2018 International Workshop on Advanced Image Technology (IWAIT) (pp. 1-4). IEEE.
  39. Ramteke, N. S., & Jain, S. V. (2013). ABCD rule based automatic computer-aided skin cancer detection using MATLAB. International Journal of Computer Technology and Applications, 4(4), 691.
  40. Moura, N., Veras, R., Aires, K., Machado, V., Silva, R., Araújo, F., & Claro, M. (2018, June). Combining ABCD Rule, Texture Features and Transfer Learning in Automatic Diagnosis of Melanoma. In 2018 IEEE Symposium on Computers and Communications (ISCC) (pp. 00508-00513). IEEE.
  41. Kaymak, S., Esmaili, P., & Serener, A. (2018, November). Deep Learning for Two-Step Classification of Malignant Pigmented Skin Lesions. In 2018 14th Symposium on Neural Networks and Applications (NEUREL) (pp. 1-6). IEEE.
  42. Eric Vander Putten(2018) Deep Residual Neural Networks for Automated Basal Cell CarcinomaDetection 2018 IEEE EMBS International Conference on Biomedical & Health Informatics (BHI)4-7 March 2018.
  43. Yu, C., Yang, S., Kim, W., Jung, J., Chung, K. Y., Lee, S. W., & Oh, B. (2018). Acral melanoma detection using a convolutional neural network for dermoscopy images. PloS one, 13(3), e0193321.
  44. S.Kalaiarasi et al, International Journal of Computer Science and Mobile Applications, Vol.6 Issue. 4, April- 2018, pg. 109-118
  45. Navarro, F., Escudero-Viñolo, M., & Bescós, J. (2019). Accurate segmentation and registration of skin lesion images to evaluate lesion change. IEEE journal of biomedical and health informatics, 23(2), 501-508.
  46. Harangi, B. (2018). Skin lesion classification with ensembles of deep convolutional neural networks. Journal of biomedical informatics, 86, 25-32.
  47. Monisha, M., Suresh, A., Bapu, B. T., & Rashmi,M. R. (2018). Classification of malignant melanoma and benign skin lesion by using back propagation neural network and ABCD rule. Cluster Computing, 1-11.
  48. Rebouças Filho, P. P., Peixoto, S. A., da Nóbrega,R. V. M., Hemanth, D. J., Medeiros, A. G., Sangaiah, A. K., & de Albuquerque, V. H. C. (2018). Automatic histologicallycloserclassificationofskinlesions.Computerized Medical Imaging and Graphics, 68, 40-54.
  49. Patiño, D., Avendaño, J., & Branch, J. W. (2018, September). Automatic skin lesion segmentation on dermoscopy images by the means of superpixel merging. In International Conference on Medical Image Computing and Computer-Assisted Intervention (pp. 728-736). Springer, Cham.
  50. Aljanabi, M., Özok, Y., Rahebi, J., & Abdullah, A. (2018). Skin Lesion Segmentation Method for Dermoscopy Images Using Artificial Bee Colony Algorithm. Symmetry, 10(8), 347.
  51. Vasconcelos, F. F. X., Medeiros, A. G., Peixoto, S. A., & Rebouças Filho, P. P. (2019). Automatic skin lesions segmentation based on a new morphological approach via geodesic active contour. Cognitive Systems Research, 55, 44-59.
Index Terms

Computer Science
Information Sciences

Keywords

Dermoscopy Skin cancer Feature extraction Classification.