CFP last date
20 January 2025
Reseach Article

Deep Learning Innovations in Recommender Systems

by Bilal Ahmed, Li Wang, Muhammad Amjad, Waqar Hussain, Syed Badar-ud-Duja, M. Abdul Qadoos Bilal
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 178 - Number 12
Year of Publication: 2019
Authors: Bilal Ahmed, Li Wang, Muhammad Amjad, Waqar Hussain, Syed Badar-ud-Duja, M. Abdul Qadoos Bilal
10.5120/ijca2019918882

Bilal Ahmed, Li Wang, Muhammad Amjad, Waqar Hussain, Syed Badar-ud-Duja, M. Abdul Qadoos Bilal . Deep Learning Innovations in Recommender Systems. International Journal of Computer Applications. 178, 12 ( May 2019), 57-59. DOI=10.5120/ijca2019918882

@article{ 10.5120/ijca2019918882,
author = { Bilal Ahmed, Li Wang, Muhammad Amjad, Waqar Hussain, Syed Badar-ud-Duja, M. Abdul Qadoos Bilal },
title = { Deep Learning Innovations in Recommender Systems },
journal = { International Journal of Computer Applications },
issue_date = { May 2019 },
volume = { 178 },
number = { 12 },
month = { May },
year = { 2019 },
issn = { 0975-8887 },
pages = { 57-59 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume178/number12/30614-2019918882/ },
doi = { 10.5120/ijca2019918882 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-07T00:50:14.361283+05:30
%A Bilal Ahmed
%A Li Wang
%A Muhammad Amjad
%A Waqar Hussain
%A Syed Badar-ud-Duja
%A M. Abdul Qadoos Bilal
%T Deep Learning Innovations in Recommender Systems
%J International Journal of Computer Applications
%@ 0975-8887
%V 178
%N 12
%P 57-59
%D 2019
%I Foundation of Computer Science (FCS), NY, USA
Abstract

Recommender systems are one of the best choices to cope with the problem of information overload. These systems are commonly used in recent years help to match users with different items. As more data is available on the internet traditional methods suffer from challenges like accuracy and scalability. Deep learning a state of art machine learning method also achieve promising performance in the field of recommender system. In this study we provide an overview of traditional approaches their limitations and then discuss about the aspects of deep learning used in the recommender system domain to improve the accuracy in recommender system domains. These deep recommender systems can be used to understand the demands of users and improve the value in recommendations.

References
  1. S. Sivapalan, A. Sadeghian, H. Rahnama, and A. M. Madni, “Recommender systems in e-commerce,” in World Automation Congress Proceedings, 2014.
  2. M. Ge, F. Ricci, and D. Massimo, “Health-aware food recommender system,” RecSys 2015 - Proc. 9th ACM Conf. Recomm. Syst., pp. 333–334, 2015.
  3. G. A. Sielis, A. Tzanavari, and G. A. Papadopoulos, “Recommender Systems Review of Types, Techniques, and Applications,” Encycl. Inf. Sci. Technol. Third Ed., no. November, pp. 7260–7270, 2014.
  4. F. Ricci, L. Rokach, B. Shapira, P. B. Kantor, and F. Ricci, Recommender Systems Handbook. 2010.
  5. R. Ali, J. Siddiqui, and S. S. Sohail, “http://www.jestr.org/downloads/Volume10Issue4/fulltext171042017.pdf,” J. Eng. Sci. Technol. Rev., vol. 10, no. 4, pp. 132–153, 2017.
  6. B. T. Betru, C. A. Onana, and B. Bernabe, “Deep Learning Methods on Recommender System: A Survey of State-of-the-art,” Int. J. Comput. Appl., vol. 162, no. 10, pp. 975–8887, 2017.
  7. S. Edition, Recommender Systems Handbook. 2015.
  8. J. Lu, D. Wu, M. Mao, W. Wang, and G. Zhang, “Recommender system application developments: A survey,” Decis. Support Syst., 2015.
  9. M. M. Najafabadi, F. Villanustre, T. M. Khoshgoftaar, N. Seliya, R. Wald, and E. Muharemagic, “Deep learning applications and challenges in big data analytics,” J. Big Data, vol. 2, no. 1, pp. 1–21, 2015.
  10. G. Hinton, “Restricted Boltzmann Machines for Collaborative Filtering Ruslan,” J. Comput. Inf. Technol., vol. 6, no. 3, pp. 245–254, 1998.
  11. L. Zheng, “A Survey and Critique of Deep Learning on Recommender Systems by,” no. September, 2016.
  12. Q. Li, X. Zheng, and X. Wu, “Neural Collaborative Autoencoder,” pp. 1–12, 2017.
  13. B. Hidasi and A. Karatzoglou, “Recurrent Neural Networks with Top-k Gains for Session-based Recommendations,” pp. 370–371, 2017.
  14. K. Sheth, “Deep Neural Networks for HDR imaging,” pp. 191–198, 2016.
  15. D. Tikk, B. Hidasi, A. Karatzoglou, O. Sar-Shalom, H. Roitman, and B. Shapira, “RecSys’16 Workshop on Deep Learning for Recommender Systems (DLRS),” pp. 415–416, 2016.
  16. S. Sidana, M. Trofimov, O. Horodnitskii, C. Laclau, Y. Maximov, and M.-R. Amini, “Representation Learning and Pairwise Ranking for Implicit Feedback in Recommendation Systems,” vol. 14, no. 8, pp. 1–12, 2017.
  17. G. de S. P. Moreira, F. Ferreira, and A. M. da Cunha, “News Session-Based Recommendations using Deep Neural Networks,” 2018.
  18. A. Shatnawi, G. Al-Bdour, R. Al-Qurran, and M. Al-Ayyoub, “A comparative study of open source deep learning frameworks,” 2018 9th Int. Conf. Inf. Commun. Syst. ICICS 2018, vol. 2018–January, no. April, pp. 72–77, 2018.
Index Terms

Computer Science
Information Sciences

Keywords

Recommender Systems Deep Learning Neural Networks