CFP last date
20 January 2025
Reseach Article

An Algorithm for Target Identification of Fanconi Anemia in Drug Discovery

by Md Jayedul Haque, Galib Muhammad Shahriar, Kh. Abdullah Al- Aff
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 178 - Number 12
Year of Publication: 2019
Authors: Md Jayedul Haque, Galib Muhammad Shahriar, Kh. Abdullah Al- Aff
10.5120/ijca2019918878

Md Jayedul Haque, Galib Muhammad Shahriar, Kh. Abdullah Al- Aff . An Algorithm for Target Identification of Fanconi Anemia in Drug Discovery. International Journal of Computer Applications. 178, 12 ( May 2019), 32-37. DOI=10.5120/ijca2019918878

@article{ 10.5120/ijca2019918878,
author = { Md Jayedul Haque, Galib Muhammad Shahriar, Kh. Abdullah Al- Aff },
title = { An Algorithm for Target Identification of Fanconi Anemia in Drug Discovery },
journal = { International Journal of Computer Applications },
issue_date = { May 2019 },
volume = { 178 },
number = { 12 },
month = { May },
year = { 2019 },
issn = { 0975-8887 },
pages = { 32-37 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume178/number12/30583-2019918878/ },
doi = { 10.5120/ijca2019918878 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-07T00:50:11.624845+05:30
%A Md Jayedul Haque
%A Galib Muhammad Shahriar
%A Kh. Abdullah Al- Aff
%T An Algorithm for Target Identification of Fanconi Anemia in Drug Discovery
%J International Journal of Computer Applications
%@ 0975-8887
%V 178
%N 12
%P 32-37
%D 2019
%I Foundation of Computer Science (FCS), NY, USA
Abstract

At the current age, Bioinformatics and Computational Biology which is the field of science, includes not only Molecular biology but also Computer science and Databases, Information technology or Information management. The objective of this field is to develop methods and software tools for analyzing and interpreting biological data. The study of Computational Biology and Bioinformatics not only developing the phase of science but also developing so many cure of malignant and remarkable diseases in human span. For example, DNA replication can be considered the primal one. DNA replication causes cell division but when this is thwarted the unusual malady takes place. Fanconi Anemia is one of the unusual disorders which arises by the means of blockage of DNA replication. The subsequent outcome of Fanconi Anemia is cancer which is sometimes exacerbated and no other remedy found even along with drug. So, it is becoming vital to identify and finding of drug discovery methodology of Fanconi Anemia. Enormous research has been introduced to Fanconi Anemia which implicates the reason and clinical research. In this study we are going to propose an algorithm which will be able to identify the presence of Fanconi Anemia and will make a space to identify the target of drug discovery.

References
  1. T.M. Schroeder, F. Anschütz,A. Knopp, Spontane chromosomenaberrationen bei familiärer panmyelopathie, Humangenetik 1 (1964) 194–196.
  2. M. Sasaki, Is Fanconi’s anaemia defective in a process essential for the repair of DNA cross links? Nature 257 (1975) 501–503.
  3. A.D. Auerbach, S.R. Wolman, Susceptibility of Fanconi’s anaemia fibroblasts to chromosome damage by carcinogens, Nature 261 (1976) 494–496.
  4. Gluckman E, Wagner JE. Hematopoietic stem cell transplantation in childhood inherited bone marrow failure syndrome. Bone Marrow Transplant. 2008; 41(2):127-132.
  5. Alter BP. Diagnosis, genetics, and management of inherited bone marrow failure syndromes. Hematology Am Soc Hematol Educ Program. 2007;29-39.
  6. Auerbach AD, Wolman SR. Carcinogen-induced chromosome breakage in Fanconi’s anaemia heterozygous cells. Nature. 1978;271:69-71.
  7. Macmillan ML, Wagner JE. Haematopoeitic cell transplantation for Fanconi anaemia—when and how? Br J Haematol. 2010 Feb 5.
  8. Gluckman E, Devergie A, Schaison G, et al. Bone marrow transplantation in Fanconi anaemia. Br J Haematol. 1980;45:557-564.
  9. Sociẻe G, Gluckman E, Raynal B, et al. Bone marrow transplantation for Fanconi anemia using low-dose cyclophosphamide/ thoracoabdominal irradiation as conditioning regimen: chimerism study by the polymerase chain reaction. Blood. 1993;82: 2249-2256.
  10. Polina Stepensky, Michael Y. Shapira, Dmitry Balashov, Pavel Trakhtman, Elena Skorobogatova, Lyudmila Rheingold, Rebecca Brooks, Shoshana Revel-Vilk, Michael Weintraub, Jerry Stein, Alexey Maschan, Reuven Or, Igor B. Resnick Bone Marrow Transplantation for Fanconi Anemia Using Fludarabine-Based Conditioning, Biol Blood Marrow Transplant 17: 1282-1288 (2011).
  11. C.A. Strathdee, H. Gavish, W.R. Shannon, M. Buchwald, Cloning of cDNAs for Fanconi’s anaemia by functional complementation,Nature 356 (1992) 763–767.
  12. J.R. Lo Ten Foe, M.A. Rooimans, L. Bosnoyan-Collins, N. Alon, M. Wijker, L. Parker, J. Lightfoot, M. Carreau, D.F. Callen, A. Savoia, N.C. Cheng, C.G. van Berkel, M.H. Strunk, J.J. Gille, G. Pals, F.A. Kruyt, J.C. Pronk, F. Arwert, M. Buchwald, H. Joenje, Expression cloning of a cDNA for the major Fanconi anaemia gene, FAA, Nat. Genet. 14 (1996) 320–323.
  13. J.P. de Winter, Q. Waisfisz, M.A. Rooimans, C.G.M. van Berkel, L. Bosnoyan- Collins, N. Alon, M. Carreau, O. Bender, I. Demuth, D. Schindler, J.C. Pronk, F. Arwert, H. Hoehn, M. Digweed, M. Buchwald, H. Joenje, The Fanconi anaemia group G gene FANCG is identical with XRCC9, Nat. Genet. 20 (1998) 281–283.
  14. J.P. de Winter, M.A. Rooimans, L. van der Weel, C.G.M. van Berkel, N. Alon, L. Bosnoyan-Collins, J. De Groot, Y. Zhi, Q. Waisfisz, J.C. Pronk, F. Arwert, C.G. Mathew, R.J. Scheper,M.E. Hoatlin, M. Buchwald, H. Joenje, The Fanconi anaemia gene FANCF encodes a novel protein with homology to ROM, Nat. Genet. 24 (2000) 15–16.
  15. Y.J. Machida, Y. Machida, Y. Chen, A.M. Gurtan, G.M. Kupfer, A.D. D’Andrea, A. Dutta, UBE2T is the E2 in the Fanconi anemia pathway and undergoes negative autoregulation, Mol. Cell 23 (2006) 589–596.
  16. S.M. Nijman, T.T. Huang, A.M. Dirac, T.R. Brummelkamp, R.M. Kerkhoven, A.D. D’Andrea, R. Bernards, The deubiquitinatingenzymeUSP1regulates the Fanconi anemia pathway, Mol. Cell 17 (2005) 331–339.
  17. Syed Asif Hassan, Ahmed Hamza Osman. “An Improved Machine Learning Approach to Enhance the Predictive Accuracy for Screening Potential Active USP1/UAF1 Inhibitors”, Vol. 8, No. 4, 2017.
  18. Daisy Klein Douwel, Rick A.C.M. Boonen, David T. Long, Anna A. Szypowska, Markus Ra¨ schle, Johannes C. Walter, and Puck Knipscheer, “XPF-ERCC1 Acts in Unhooking DNA Interstrand Crosslinks in Cooperation with FANCD2 and FANCP/SLX4”, available at http://dx.doi.org/10.1016/j.molcel.2014.03.015.
  19. Yi-Ping Phoebe Chen & Feng Chen, “Identifying targets for drug discovery using bioinformatics”, Ther. Targets (2008) 12(4):383-389.
  20. A. D. D'Andrea, M. Grompe, Nat. Rev. Cancer 3, 23 (2003).
  21. W. Wang, Nat. Rev. Genet. 8, 735 (2007).
  22. Johan P. de Winter, Hans Joenje. “The genetic and molecular basis of Fanconi anemia”. Department of Clinical Genetics.
  23. The Fanconi Anemia Pathway of DNA Repair and Human Cancer By Vaidehi Krishnan, Lavina Sierra Tay and Yoshiaki Ito DOI: 10.5772/59995
  24. Paweł Mackiewicz Where does bacterial replication start? Rules for predicting the oriC region, Nucleic Acids Research, 2004, Vol. 32, No. 13 3781–3791 ,doi:10.1093/nar/gkh699
  25. A. F. Alpi, P. E. Pace, M. M. Babu, K. J. Patel, Mol. Cell 32, 767 (2008).
  26. I. Garcia-Higuera et al., Mol. Cell 7, 249 (2001).
  27. A. Smogorzewska et al., Cell 129, 289 (2007).
  28. T. Taniguchi et al., Blood 100, 2414 (2002).
  29. Orlando D Schärer, “ERCC1‐XPF endonuclease positioned to cut”, DOI 10.15252/embj.201797489.
  30. M. Ben-Yehoyada et al., Mol. Cell 35, 704 (2009).
  31. X. Shen et al., Mol. Cell 35, 716 (2009)
  32. A. Sobeck et al., Mol. Cell. Biol. 26, 425 (2006).
  33. Y. M. Akkari et al., Mol. Genet. Metab. 74, 403 (2001).
  34. M. Raschle et al., Cell 134, 969 (2008).
  35. L. H. Thompson, J. M. Hinz, Mutat. Res. 668, 54 (2009).
  36. Ciccia A, et al. Identification of FAAP24, a Fanconi anemia core complex protein that interacts with FANCM. Molecular cell. 2007;25(3):331–43. [PubMed]
  37. Yan Z, et al. A histone-fold complex and FANCM form a conserved DNA-remodeling complex to maintain genome stability. Molecular cell. 2010;37(6):865–78. [PMC free article] [PubMed]
  38. Singh TR, et al. MHF1-MHF2, a histone-fold-containing protein complex, participates in the Fanconi anemia pathway via FANCM. Molecular cell. 2010;37(6):879–86. [PMC free article] [PubMed]
  39. Kim JM, et al. Cell cycle-dependent chromatin loading of the Fanconi anemia core complex by FANCM/FAAP24. Blood. 2008;111(10):5215–22.
  40. K.A. Rickman, F.P. Lach, A. Abhyankar, F.X. Donovan, E.M. Sanborn, J.A. Kennedy, C. Sougnez, S.B. Gabriel, O. Elemento, S.C. Chandrasekharappa, et al. Deficiency of UBE2T, the E2 ubiquitin ligase necessary for FANCD2 and FANCI ubiquitination, causes FA-T subtype of Fanconi Anemia
  41. JPred4: A Protein Secondary Structure Prediction Server". Retrieved 16 July 2015.
  42. Jump up to: a b Drozdetskiy, Alexey; Cole, Chris; Procter, James; Barton, Geoffrey (Apr 16, 2015). "JPred4: a protein secondary structure prediction server". Nucleic Acids Research. 43: W389–W394. PMC 4489285 Freely accessible. PMID 25883141. doi:10.1093/nar/gkv332.
  43. Irina Kufareva and Ruben Abagyan, “Methods of protein structure comparison”, doi: 10.1007/978-1-61779-588-6_10.
  44. Feng Gao and Chun-Ting Zhang , Ori-Finder: A web-based system for finding oriC s in unannotated bacterial genomes, BMC Bioinformatics 2008, doi: 10.1186/1471-2105-9-79.
  45. Gerry P. Crossan et al. Disruption of mouse Slx4, a regulator of structure-specific nucleases, phenocopies Fanconi Anemia, doi: 10.1038/ng.752.
Index Terms

Computer Science
Information Sciences

Keywords

Algorithm Fanconi Anemia DNA Drug Discovery Target Identification Mutation.