CFP last date
20 January 2025
Reseach Article

Sentiment Analysis of Tweets using SVM

by Munir Ahmad, Shabib Aftab, Iftikhar Ali
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 177 - Number 5
Year of Publication: 2017
Authors: Munir Ahmad, Shabib Aftab, Iftikhar Ali
10.5120/ijca2017915758

Munir Ahmad, Shabib Aftab, Iftikhar Ali . Sentiment Analysis of Tweets using SVM. International Journal of Computer Applications. 177, 5 ( Nov 2017), 25-29. DOI=10.5120/ijca2017915758

@article{ 10.5120/ijca2017915758,
author = { Munir Ahmad, Shabib Aftab, Iftikhar Ali },
title = { Sentiment Analysis of Tweets using SVM },
journal = { International Journal of Computer Applications },
issue_date = { Nov 2017 },
volume = { 177 },
number = { 5 },
month = { Nov },
year = { 2017 },
issn = { 0975-8887 },
pages = { 25-29 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume177/number5/28624-2017915758/ },
doi = { 10.5120/ijca2017915758 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-07T00:45:04.096749+05:30
%A Munir Ahmad
%A Shabib Aftab
%A Iftikhar Ali
%T Sentiment Analysis of Tweets using SVM
%J International Journal of Computer Applications
%@ 0975-8887
%V 177
%N 5
%P 25-29
%D 2017
%I Foundation of Computer Science (FCS), NY, USA
Abstract

Community's view and feedback have always proved to be the most essential and valuable resource for companies and organizations. With social media being the emerging trend among everyone, it paves way for unprecedented analysis and evaluation of various aspects for which organizations had to rely on unconventional, time consuming and error prone methods earlier. This technique of analysis directly falls under the domain of "sentiment analysis". Sentiment analysis encompasses the vast field of effective classification of user generated text under defined polarities. There are several tools and algorithms available to perform sentiment detection and analysis including supervised machine learning algorithms that perform classification on the target corpus, after getting trained with training data. Lexical techniques which performs classification on the basis of dictionary based annotated corpus and Hybrid tools which are combination of machine learning and lexicon based algorithms. In this paper we have used Support Vector Machine (SVM) for sentiment analysis in Weka. SVM is one of the widely used supervised machine learning algorithms for textual polarity detection. To analyze the performance of SVM, two pre classified datasets of tweets are used and for comparative analysis, three measures are used: Precision, Recall and F-Measure. Results are shown in the form of tables and graphs.

References
  1. Ahmad, M., & Aftab, S. (2017). Analyzing the Performance of SVM for Polarity Detection with Different Datasets. International Journal of Modern Education and Computer Science (IJMECS), 9(10), 29-36.
  2. Sharma, A., & Dey, S. (2013, October). A boosted SVM based sentiment analysis approach for online opinionated text. In Proceedings of the 2013 Research in Adaptive and Convergent Systems (pp. 28-34). ACM.
  3. Singh, V. K., Piryani, R., Uddin, A., & Waila, P. (2013, January). Sentiment analysis of textual reviews; Evaluating machine learning, unsupervised and SentiWordNet approaches. In Knowledge and Smart Technology (KST), 2013 5th International Conference on (pp. 122-127). IEEE.
  4. Holmes, G., Donkin, A., & Witten, I. H. (1994, December). Weka: A machine learning workbench. In Intelligent Information Systems, 1994. Proceedings of the 1994 Second Australian and New Zealand Conference on (pp. 357-361). IEEE.
  5. Crowdflower.com. (2017). [online] Available at: https://www.crowdflower.com/wp-content/uploads/2016/03/Twitter-sentiment-self-drive-DFE.csv [Accessed 15 Aug. 2017].
  6. Crowdflower.com. (2017). [online] Available at: https://www.crowdflower.com/wp-content/uploads/2016/03/ Apple-Twitter-Sentiment-DFE.csv [Accessed 15 Aug. 2017].
  7. Weka: http://www.cs.waikato.ac.nz/~ml/weka/
  8. Zainudin, S., Jasim, D. S., & Bakar, A. A. (2016). Comparative Analysis of Data Mining Techniques for Malaysian Rainfall Prediction. International Journal on Advanced Science, Engineering and Information Technology, 6(6), 1148-1153.
  9. Pang, B., & Lee, L. (2008). Opinion mining and sentiment analysis. Foundations and Trends® in Information Retrieval, 2(1–2), 1-135.
  10. Saif, H., He, Y., Fernandez, M., & Alani, H. (2016). Contextual semantics for sentiment analysis of Twitter. Information Processing & Management, 52(1), 5-19.
  11. Liu, B. (2012). Sentiment analysis and opinion mining. Synthesis lectures on human language technologies, 5(1), 1-167
  12. Ahmad, M., Aftab, S., Muhammad, S. S., & Waheed, U. (2017). Tools and Techniques for Lexicon Driven Sentiment Analysis: A Review. Int. J. Multidiscip. Sci. Eng, 8(1), 17-23.
  13. Ahmad, M., Aftab, S., Muhammad, S. S., & Ahmad, S. (2017). Machine Learning Techniques for Sentiment Analysis: A Review. Int. J. Multidiscip. Sci. Eng, 8(3), 27-32.
  14. Mudinas, A., Zhang, D., & Levene, M. (2012, August). Combining lexicon and learning based approaches for concept-level sentiment analysis. In Proceedings of the First International Workshop on Issues of Sentiment Discovery and Opinion Mining(p. 5). ACM.
  15. Malandrakis, N., Kazemzadeh, A., Potamianos, A., & Narayanan, S. (2013, June). SAIL: A hybrid approach to sentiment analysis. In SemEval@ NAACL-HLT (pp. 438-442).
  16. Balage Filho, P., & Pardo, T. (2013, June). NILC_USP: A Hybrid System for Sentiment Analysis in Twitter Messages. In SemEval@ NAACL-HLT (pp. 568-572).
  17. “AlchemyAPI.” [Online]. Available: https://www.ibm.com/watson/alchemy-api.html.
  18. Ahmad, M., Aftab, S., Ali, I., & Hameed, N. (2017). Hybrid Tools and Techniques for Sentiment Analysis: A Review. Int. J. Multidiscip. Sci. Eng, 8(3)
  19. Cortes, C., & Vapnik, V. (1995). Support vector machine. Machine learning, 20(3), 273-297
  20. Pang, B., Lee, L., & Vaithyanathan, S. (2002, July). Thumbs up?: sentiment classification using machine learning techniques. In Proceedings of the ACL-02 conference on Empirical methods in natural language processing-Volume 10 (pp. 79-86). Association for Computational Linguistics
  21. Zgheib, W. A., & Barbar, A. M. A Study using Support Vector Machines to Classify the Sentiments of Tweets.
  22. Arora, R. (2012). Comparative analysis of classification algorithms on different datasets using WEKA. International Journal of Computer Applications, 54(13).
  23. Go, A., Bhayani, R., & Huang, L. (2009). Twitter sentiment classification using distant supervision. CS224N Project Report, Stanford, 1(2009), 12.
  24. Shoukry, A., & Rafea, A. (2012, May). Sentence-level Arabic sentiment analysis. In Collaboration Technologies and Systems (CTS), 2012 International Conference on (pp. 546-550). IEEE.
  25. Altawaier, M. M., & Tiun, S. (2016). Comparison of Machine Learning Approaches on Arabic Twitter Sentiment Analysis. International Journal on Advanced Science, Engineering and Information Technology, 6(6), 1067-1073.
  26. Neethu, M. S., & Rajasree, R. (2013, July). Sentiment analysis in twitter using machine learning techniques. In Computing, Communications and Networking Technologies (ICCCNT), 2013 Fourth International Conference on (pp. 1-5). IEEE.
  27. Liu, S., Li, F., Li, F., Cheng, X., & Shen, H. (2013, October). Adaptive co-training SVM for sentiment classification on tweets. In Proceedings of the 22nd ACM international conference on Information & Knowledge Management (pp. 2079-2088). ACM.
  28. Alfina, I., Sigmawaty, D., Nurhidayati, F., & Hidayanto, A. N. (2017, February). Utilizing Hashtags for Sentiment Analysis of Tweets in The Political Domain. In Proceedings of the 9th International Conference on Machine Learning and Computing (pp. 43-47). ACM.
  29. Mueen, A., Zafar, B., & Manzoor, U. (2016). Modeling and Predicting Students' Academic Performance Using Data Mining Techniques. International Journal of Modern Education and Computer Science, 8(11), 36.
  30. Isa, D., Lee, L. H., Kallimani, V. P., & Rajkumar, R. (2008). Text document preprocessing with the Bayes formula for classification using the support vector machine. IEEE Transactions on Knowledge and Data engineering, 20(9), 1264-1272.
Index Terms

Computer Science
Information Sciences

Keywords

Polarity Detection Sentiment Analysis Opinion Mining Data Mining Data Classification Machine Learning Support Vector Machine SVM