CFP last date
20 December 2024
Reseach Article

A Survey of Game Theory Applications in Electrical Power Micro-Grid Systems

by Osama Abdel-Raouf, M. A. Elsisy, E. F. Kelash
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 177 - Number 37
Year of Publication: 2020
Authors: Osama Abdel-Raouf, M. A. Elsisy, E. F. Kelash
10.5120/ijca2020919871

Osama Abdel-Raouf, M. A. Elsisy, E. F. Kelash . A Survey of Game Theory Applications in Electrical Power Micro-Grid Systems. International Journal of Computer Applications. 177, 37 ( Feb 2020), 25-34. DOI=10.5120/ijca2020919871

@article{ 10.5120/ijca2020919871,
author = { Osama Abdel-Raouf, M. A. Elsisy, E. F. Kelash },
title = { A Survey of Game Theory Applications in Electrical Power Micro-Grid Systems },
journal = { International Journal of Computer Applications },
issue_date = { Feb 2020 },
volume = { 177 },
number = { 37 },
month = { Feb },
year = { 2020 },
issn = { 0975-8887 },
pages = { 25-34 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume177/number37/31147-2020919871/ },
doi = { 10.5120/ijca2020919871 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-07T00:48:00.014377+05:30
%A Osama Abdel-Raouf
%A M. A. Elsisy
%A E. F. Kelash
%T A Survey of Game Theory Applications in Electrical Power Micro-Grid Systems
%J International Journal of Computer Applications
%@ 0975-8887
%V 177
%N 37
%P 25-34
%D 2020
%I Foundation of Computer Science (FCS), NY, USA
Abstract

The technology of Smart Grid is believed to be the future of power system networks. Smart Grid (SG) gains its importance due to its proven ability to improve stability, efficiency and robustness of electrical power grids. SG system consists mainly of two components which are electrical distribution system and communication layer. In the electrical distribution system, the generated energy comes from a network of distributed energy resources "DERs", which is called micro-grid. In most cases, these DERs are recommended to be renewable energy sources "RESs" to reduce emissions and harmful environmental effects. One of the main drawbacks of renewable energy sources is that their availability varies with time and so that the micro-grid technology faces various technical challenges which motivate many researchers to adopt techniques to overcome these challenges. In this regard and due to its capability of studying complex interactions between independent rational players, game theory is expected to have a great contribution in the phase of design and analysis of micro-grids. In this paper, the fundamental concepts of game theory are streamlined, an overview on the applications of game theoretical concepts in various micro-grid optimization problems are presented, a novel classification of research points covered by researchers are provided. Finally, some future opportunities that are expected to solve some of the technical challenges facing micro-grid technology are introduced.

References
  1. Hartono, B.S. and Setiabudy, R., 2013, June. Review of microgrid technology. In QiR (Quality in Research), 2013 International Conference on (pp. 127-132). IEEE.
  2. Jiayi, H., Chuanwen, J. and Rong, X., 2008. A review on distributed energy resources and MicroGrid. Renewable and Sustainable Energy Reviews, 12(9), pp.2472-2483.
  3. Hatziargyriou, N., 2008. Microgrids [guest editorial]. IEEE Power and Energy Magazine, 6(3), pp.26-29.
  4. Soshinskaya, M., Crijns-Graus, W.H., Guerrero, J.M. and Vasquez, J.C., 2014. Microgrids: Experiences, barriers and success factors. Renewable and Sustainable Energy Reviews, 40, pp.659-672.
  5. Saad, W., Han, Z., Poor, H.V. and Basar, T., 2012. Game-theoretic methods for the smart grid: An overview of microgrid systems, demand-side management, and smart grid communications. IEEE Signal Processing Magazine, 29(5), pp.86-105.
  6. Saad, W., Han, Z., Debbah, M., Hjørungnes, A., & Basar, T. (2009). Coalitional game theory for communication networks: A tutorial. arXiv preprint arXiv:0905.4057.‏
  7. Carmichael, F. (2005). A guide to game theory. Pearson Education.‏
  8. Nash, J. (1951). Non-cooperative games. Annals of mathematics, 286-295.‏
  9. Nash, J. F. (1950). Equilibrium points in n-person games. Proceedings of the national academy of sciences, 36(1), 48-49.‏
  10. Myerson, R. B. (2013). Game theory. Harvard university press.‏
  11. Basar, T., & Olsder, G. J. (1999). Dynamic noncooperative game theory (Vol. 23). Siam.‏
  12. Peleg, B., & Sudhölter, P. (2007). Introduction to the theory of cooperative games (Vol. 34). Springer Science & Business Media.‏
  13. Yeung, D. W., & Petrosjan, L. A. (2006). Cooperative stochastic differential games. Springer Science & Business Media.‏
  14. Branzei, R., Dimitrov, D., & Tijs, S. (2008). Models in cooperative game theory (Vol. 556). Springer Science & Business Media.‏
  15. Vincent, T. L., & Brown, J. S. (2005). Evolutionary game theory, natural selection, and Darwinian dynamics. Cambridge University Press.‏
  16. Smith, J. M. (1982). Evolution and the Theory of Games. Cambridge university press.‏
  17. Mailath, G. J. (1998). Do people play Nash equilibrium? Lessons from evolutionary game theory. Journal of Economic Literature, 36(3), 1347-1374.‏
  18. Mei, S., Wei, W., & Liu, F. (2017). On engineering game theory with its application in power systems. Control Theory and Technology, 15(1), 1-12.‏
  19. Chattopadhyay, S., & Chatterjee, R. (2019). Understanding Auctions. Routledge.‏
  20. Kalai, E., & Smorodinsky, M. (1975). Other solutions to Nash’s bargaining problem. Econometrica, 43(3), 513-518.‏
  21. Kalai, E. (1977). Proportional solutions to bargaining situations: interpersonal utility comparisons. Econometrica: Journal of the Econometric Society, 1623-1630.‏
  22. Binmore, K., Rubinstein, A., & Wolinsky, A. (1986). The Nash bargaining solution in economic modelling. The RAND Journal of Economics, 176-188.‏
  23. Saad, W., Han, Z., & Poor, H. V. (2011, June). Coalitional game theory for cooperative micro-grid distribution networks. In 2011 IEEE international conference on communications workshops (ICC) (pp. 1-5). IEEE.‏
  24. Yasir, M., Purvis, M., Purvis, M., & Savarimuthu, B. T. R. (2015, October). Dynamic coalition formation in energy micro-grids. In International Conference on Principles and Practice of Multi-Agent Systems (pp. 152-168). Springer, Cham.‏
  25. Shams, F., & Tribastone, M. (2015, September). Power Trading Coordination in Smart Grids Using Dynamic Learning and Coalitional Game Theory. In International Conference on Quantitative Evaluation of Systems (pp. 54-69). Springer, Cham.‏
  26. Chakraborty, S., Nakamura, S., & Okabe, T. (2014, October). Scalable and optimal coalition formation of microgrids in a distribution system. In IEEE PES Innovative Smart Grid Technologies, Europe (pp. 1-6). IEEE.‏
  27. Moradi, M. H., Abedini, M., & Hosseinian, S. M. (2015). A combination of evolutionary algorithm and game theory for optimal location and operation of DG from DG owner standpoints. IEEE Transactions on Smart Grid, 7(2), 608-616.‏
  28. López Lezama, J. M., Contreras, J., & Padilha Feltrin, A. (2012). Contract pricing evaluation of distributed generation: a game theory approach. Ingeniería y Desarrollo, 30(2), 182-198.‏
  29. Xu, Y., Hou, E., & Ansari, N. (2014, December). Economic coalition strategies for cost reductions in microgrids distribution networks. In 2014 IEEE Global Communications Conference (pp. 2703-2708). IEEE.‏
  30. Mei, J., Chen, C., Wang, J., & Kirtley, J. L. (2019). Coalitional game theory based local power exchange algorithm for networked microgrids. Applied energy, 239, 133-141.‏
  31. Bhatti, B. A., & Broadwater, R. (2019). Energy trading in the distribution system using a non-model based game theoretic approach. Applied Energy, 253, 113532.‏
  32. Idehen, I., Abraham, S., & Murphy, V. (2018, February). Reactive power and voltage control in a power grid: A game-theoretic approach. In 2018 IEEE Texas Power and Energy Conference (TPEC) (pp. 1-6). IEEE.‏
  33. Khaskheli, S., Halepoto, I. A., & Khalid, A. (2019). RESIDENTIAL COMMUNITY MICRO GRID LOAD SCHEDULING AND MANAGEMENT SYSTEM USING COOPERATIVE GAME THEORY. 3C Tecnologia.‏
  34. Beiranvand, A., Abuhilaleh, M., & Li, L. (2017, August). A novel method for optimizing distributed generation in distribution networks using the game theory. In 2017 20th International Conference on Electrical Machines and Systems (ICEMS) (pp. 1-5). IEEE.‏
Index Terms

Computer Science
Information Sciences

Keywords

Game Theory Cooperative Game Theory Non-Cooperative Game Theory Smart Grid Micro Grid Distributed Generators.