CFP last date
20 January 2025
Reseach Article

Towards Rumors Detection Framework for Social Media

by Hadeer Sanaa, Nagy Ramadan, Hesham A. Hefny
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 177 - Number 31
Year of Publication: 2020
Authors: Hadeer Sanaa, Nagy Ramadan, Hesham A. Hefny
10.5120/ijca2020919780

Hadeer Sanaa, Nagy Ramadan, Hesham A. Hefny . Towards Rumors Detection Framework for Social Media. International Journal of Computer Applications. 177, 31 ( Jan 2020), 48-56. DOI=10.5120/ijca2020919780

@article{ 10.5120/ijca2020919780,
author = { Hadeer Sanaa, Nagy Ramadan, Hesham A. Hefny },
title = { Towards Rumors Detection Framework for Social Media },
journal = { International Journal of Computer Applications },
issue_date = { Jan 2020 },
volume = { 177 },
number = { 31 },
month = { Jan },
year = { 2020 },
issn = { 0975-8887 },
pages = { 48-56 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume177/number31/31101-2020919780/ },
doi = { 10.5120/ijca2020919780 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-07T00:47:25.879652+05:30
%A Hadeer Sanaa
%A Nagy Ramadan
%A Hesham A. Hefny
%T Towards Rumors Detection Framework for Social Media
%J International Journal of Computer Applications
%@ 0975-8887
%V 177
%N 31
%P 48-56
%D 2020
%I Foundation of Computer Science (FCS), NY, USA
Abstract

A Rumor is considered as unverified pieces of information circulating, that arise in the context of uncertainty, with negative impact, and falsely attributes. Unfortunately, terribly damaging form of communication are the results of rumors. Rumors spread on social media with no exception, and only serve to amplify the negative effects on people and businesses. This paper aims to present literature related to rumor detection on social network and try to find a link on how human behavior is affected by it. Therefore, it surveys the rumors detection frameworks, algorithms, and computational techniques that help in detecting and blocking rumors from spreading on social media. Also, attributes that may identify and describe a rumor and human behavior towards rumors are gathered, unified, and arranged in an integrated recommended list. This list of attributes may be the guide for detecting and capturing rumors with their changeable inconstant form. As a result, from this trial a proposed framework is presented to offer an idea for dealing with human behavior on rumors. This model presents open issues and forwarded ideas to provide an insight for future work in the area of building Rumor-Human Behavior computational models.

References
  1. Han, B. and Srinivasan, A., 2012, June. Your friends have more friends than you do: identifying influential mobile users through random walks. In Proceedings of the thirteenth ACM international symposium on Mobile Ad Hoc Networking and Computing (pp. 5-14). ACM.
  2. Halse, S.E., Tapia, A.H., Squicciarini, A.C. and Caragea, C., 2016, May. Tweet Factors Influencing Trust and Usefulness During Both Man-Made and Natural Disasters. In ISCRAM.
  3. Liu, F., Burton-Jones, A. and Xu, D., 2014, January. Rumors on Social Media in disasters: Extending Transmission to Retransmission. In PACIS (p. 49).
  4. Huang, Y.L., Starbird, K., Orand, M., Stanek, S.A. and Pedersen, H.T., 2015, February. Connected through crisis: Emotional proximity and the spread of misinformation online. (pp. 969-980). ACM.
  5. Wang, Z., Tu, L., Guo, Z., Yang, L.T. and Huang, B., 2014. Analysis of user behaviors by mining large network data sets. Future Generation Computer Systems, 37, pp.429-437.
  6. Renso, C., Baglioni, M., de Macedo, J.A.F., Trasarti, R. and Wachowicz, M., 2013. How you move reveals who you are: understanding human behavior by analyzing trajectory data. Knowledge and information systems, 37(2), pp.331-362.
  7. Zhao, L., Yin, J. and Song, Y., 2016. An exploration of rumor combating behavior on social media in the context of social crises. Computers in Human Behavior, 58, pp.25-36.
  8. Coviello, L., Sohn, Y., Kramer, A.D., Marlow, C., Franceschetti, M., Christakis, N.A. and Fowler, J.H., 2014. Detecting emotional contagion in massive social networks. PloS one, 9(3), p.e90315.
  9. Oh, O., Agrawal, M. and Rao, H.R., 2013. Community intelligence and social media services: A rumor theoretic analysis of tweets during social crises. Mis Quarterly, pp.407-426
  10. DiFonzo, N. and Bordia, P., 2007. Rumor psychology: Social and organizational approaches (Vol. 750). Washington, DC: American Psychological Association
  11. Allport, G.W. and Postman, L., 1947. The psychology of rumor.
  12. Friggeri, A., Adamic, L., Eckles, D. and Cheng, J., 2014, May. Rumor cascades. In Eighth International AAAI Conference on Weblogs and Social Media.
  13. Jin, Z., Cao, J., Guo, H., Zhang, Y., Wang, Y. and Luo, J., 2017, July. Detection and analysis of 2016 us presidential election related rumors on twitter. In International conference on social computing, behavioral-cultural modeling and prediction and behavior representation in modeling and simulation (pp. 14-24). Springer, Cham
  14. Alexander, D.E., 2014. Social media in disaster risk reduction and crisis management. Science and engineering ethics, 20(3), pp.717-733
  15. Chen, X., Sin, S.C.J., Theng, Y.L. and Lee, C.S., 2015, June. Why do social media users share misinformation? In Proceedings of the 15th ACM/IEEE-CS Joint Conference on Digital Libraries (pp. 111-114). ACM.
  16. Mitra, T., Wright, G.P. and Gilbert, E., 2017, February. A parsimonious language model of social media credibility across disparate events. In Proceedings of the 2017 ACM Conference on Computer Supported Cooperative Work and Social Computing (pp. 126-145). ACM.
  17. Mitra, T. and Gilbert, E., 2015, April. Credbank: A large-scale social media corpus with associated credibility annotations. In Ninth International AAAI Conference on Web and Social Media.
  18. Zhao, Z., Resnick, P. and Mei, Q., 2015, May. Enquiring minds: Early detection of rumors in social media from enquiry posts. In Proceedings of the 24th International Conference on World Wide Web (pp. 1395-1405). International World Wide Web Conferences Steering Committee.
  19. Mondal, T., Pramanik, P., Bhattacharya, I., Boral, N. and Ghosh, S., 2018. Analysis and early detection of rumors in a post disaster scenario. Information Systems Frontiers, 20(5), pp.961-979.
  20. Dang, A., Moh’d, A., Islam, A. and Milios, E., 2019, January. Early Detection of Rumor Veracity in Social Media. In Proceedings of the 52nd Hawaii International Conference on System Sciences.
  21. Sabbeh, S.F. And Baatwah, S.Y., 2018. Arabic News Credibility On Twitter: An Enhanced Model Using Hybrid Features. Journal Of Theoretical & Applied Information Technology, 96(8).
  22. Zannettou, S., Sirivianos, M., Blackburn, J. and Kourtellis, N., 2019. The web of false information: Rumors, fake news, hoaxes, clickbait, and various other shenanigans. Journal of Data and Information Quality (JDIQ), 11(3), p.10.
  23. Huo, L.A., Ding, F., Liu, C. and Cheng, Y., 2018. Dynamical Analysis of Rumor Spreading Model considering Node Activity in Complex Networks. Complexity, 2018.
  24. Ibrahim, R.A., Hefny, H.A. and Hassanien, A.E., 2016, October. Controlling Rumor Cascade over Social Networks. In International Conference on Advanced Intelligent Systems and Informatics (pp. 456-466). Springer, Cham.
  25. Jang, S.M., Geng, T., Li, J.Y.Q., Xia, R., Huang, C.T., Kim, H. and Tang, J., 2018. A computational approach for examining the roots and spreading patterns of fake news: Evolution tree analysis. Computers in Human Behavior, 84, pp.103-113.
  26. Green, B., Horel, T. and Papachristos, A.V., 2017. Modeling contagion through social networks to explain and predict gunshot violence in Chicago, 2006 to 2014. JAMA internal medicine, 177(3), pp.326-333.
  27. Georgakis, C., Panagakis, Y. and Pantic, M., 2018. Dynamic behavior analysis via structured rank minimization. International journal of computer vision, 126(2-4), pp.333-357.
  28. Golshan, H.M., Hebb, A.O., Hanrahan, S.J., Nedrud, J. and Mahoor, M.H., 2018. A hierarchical structure for human behavior classification using STN local field potentials. Journal of neuroscience methods, 293, pp.254-263.
  29. Farnadi, G., Sitaraman, G., Sushmita, S., Celli, F., Kosinski, M., Stillwell, D., Davalos, S., Moens, M.F. and De Cock, M., 2016. Computational personality recognition in social media. User modeling and user-adapted interaction, 26(2-3), pp.109-142.
  30. Wang, G., Zhang, X., Tang, S., Zheng, H. and Zhao, B.Y., 2016, May. Unsupervised clickstream clustering for user behavior analysis. In Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems (pp. 225-236). ACM.
  31. Blankendaal, R., Parinussa, S. and Treur, J., 2016, August. A Temporal-Causal Modelling Approach to Integrated Contagion and Network Change in Social Networks. In ECAI (pp. 1388-1396).
  32. Zubiaga, A., Liakata, M. and Procter, R., 2017, September. Exploiting context for rumour detection in social media. In International Conference on Social Informatics (pp. 109-123). Springer, Cham.
  33. Tolosi, L., Tagarev, A. and Georgiev, G., 2016, April. An analysis of event-agnostic features for rumour classification in twitter. In Tenth International AAAI Conference on Web and Social Media.
  34. Liu, Y., Zeng, C. and Luo, Y., 2018. Dynamics of a New Rumor Propagation Model with the Spread of Truth. Applied Mathematics, 9(05), p.536.
  35. Liu, Q., Li, T. and Sun, M., 2017. The analysis of an SEIR rumor propagation model on heterogeneous network. Physica A: Statistical Mechanics and its Applications, 469, pp.372-380.
  36. Ma, J., Gao, W. and Wong, K.F., 2017, July. Detect rumors in microblog posts using propagation structure via kernel learning (pp. 708-717).
  37. Conti, M., Lain, D., Lazzeretti, R., Lovisotto, G. and Quattrociocchi, W., 2017, December. It's always April fools' day: On the difficulty of social network misinformation classification via propagation features. (pp. 1-6). IEEE.
  38. Zhu, L., Zhao, H. and Wang, H., 2016. Complex dynamic behavior of a rumor propagation model with spatial-temporal diffusion terms. Information Sciences, 349, pp.119-136.
  39. Zeng, L., Starbird, K. and Spiro, E.S., 2016, January. Rumors at the speed of light? Modeling the rate of rumor transmission during crisis. In 2016 49th Hawaii International Conference on System Sciences (HICSS) (pp. 1969-1978). IEEE.
  40. Zeng, L., Starbird, K. and Spiro, E.S., 2016, March. # unconfirmed: Classifying rumor stance in crisis-related social media messages. In Tenth International AAAI Conference on Web and Social Media.
  41. Hamidian, S. and Diab, M., 2016, June. Rumor identification and belief investigation on twitter. In Proceedings of the 7th Workshop on Computational Approaches to Subjectivity, Sentiment and Social Media Analysis (pp. 3-8).
  42. Beigi, G., Hu, X., Maciejewski, R. and Liu, H., 2016. An overview of sentiment analysis in social media and its applications in disaster relief. In Sentiment analysis and ontology engineering (pp. 313-340). Springer, Cham.
  43. Kwon, K.H., Bang, C.C., Egnoto, M. and Raghav Rao, H., 2016. Social media rumors as improvised public opinion: semantic network analyses of twitter discourses during Korean saber rattling 2013.
  44. Ferrara, E., Varol, O., Davis, C., Menczer, F. and Flammini, A., 2016. The rise of social bots. Communications of the ACM, 59(7).
  45. Bessi, A., 2016. Personality traits and echo chambers on facebook. Computers in Human Behavior, 65, pp.319-324.
  46. Shu, K., Wang, S. and Liu, H., 2018, April. Understanding user profiles on social media for fake news detection. In 2018 IEEE Conference on Multimedia Information Processing and Retrieval (MIPR) (pp. 430-435). IEEE.
  47. Li, Y., Fan, J., Wang, Y. and Tan, K.L., 2018. Influence maximization on social graphs: A survey. IEEE Transactions on Knowledge and Data Engineering, 30(10), pp.1852-1872.
  48. Liu, Y., Jin, X., Shen, H. and Cheng, X., 2017, May. Do rumors diffuse differently from non-rumors? A systematically empirical analysis in Sina Weibo for rumor identification. (pp. 407-420). Springer, Cham.
  49. Arif, A., Shanahan, K., Chou, F.J., Dosouto, Y., Starbird, K. and Spiro, E.S., 2016, February. How information snowballs: Exploring the role of exposure in online rumor propagation. In Proceedings of the 19th ACM Conference on Computer-Supported Cooperative Work & Social Computing (pp. 466-477). ACM.
  50. Zubiaga, A., Liakata, M., Procter, R., Hoi, G.W.S. and Tolmie, P., 2016. Analysing how people orient to and spread rumours in social media by looking at conversational threads. PloS one, 11(3)
  51. Chen, W., Yeo, C.K., Lau, C.T. and Lee, B.S., 2016, October. Behavior deviation: An anomaly detection view of rumor preemption. In 2016 IEEE 7th Annual Information Technology, Electronics and Mobile Communication Conference (IEMCON) (pp. 1-7). IEEE.
  52. Varol, O., Ferrara, E., Menczer, F. and Flammini, A., 2017. Early detection of promoted campaigns on social media. EPJ Data Science, 6(1), p.13.
  53. Louni, A. and Subbalakshmi, K.P., 2018. Who spread that rumor: Finding the source of information in large online social networks with probabilistically varying internode relationship strengths. IEEE Transactions on Computational Social Systems, 5(2), pp.335-343.
Index Terms

Computer Science
Information Sciences

Keywords

Rumors Rumors attributes Human Behavior Social media rumors