CFP last date
20 January 2025
Reseach Article

A Swarm-based Algorithm for Solving Economic Load Dispatch Problem

by Esraa Salem Al-Manaseer, Hind Mousa Al-hamadeen, Abdelaziz I. Hammouri
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 177 - Number 26
Year of Publication: 2019
Authors: Esraa Salem Al-Manaseer, Hind Mousa Al-hamadeen, Abdelaziz I. Hammouri
10.5120/ijca2019919719

Esraa Salem Al-Manaseer, Hind Mousa Al-hamadeen, Abdelaziz I. Hammouri . A Swarm-based Algorithm for Solving Economic Load Dispatch Problem. International Journal of Computer Applications. 177, 26 ( Dec 2019), 11-18. DOI=10.5120/ijca2019919719

@article{ 10.5120/ijca2019919719,
author = { Esraa Salem Al-Manaseer, Hind Mousa Al-hamadeen, Abdelaziz I. Hammouri },
title = { A Swarm-based Algorithm for Solving Economic Load Dispatch Problem },
journal = { International Journal of Computer Applications },
issue_date = { Dec 2019 },
volume = { 177 },
number = { 26 },
month = { Dec },
year = { 2019 },
issn = { 0975-8887 },
pages = { 11-18 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume177/number26/31060-2019919719/ },
doi = { 10.5120/ijca2019919719 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-07T00:46:58.136664+05:30
%A Esraa Salem Al-Manaseer
%A Hind Mousa Al-hamadeen
%A Abdelaziz I. Hammouri
%T A Swarm-based Algorithm for Solving Economic Load Dispatch Problem
%J International Journal of Computer Applications
%@ 0975-8887
%V 177
%N 26
%P 11-18
%D 2019
%I Foundation of Computer Science (FCS), NY, USA
Abstract

Economic Load Dispatch problem (ELD) is considered a NP-hard combinatorial optimization problem. The function of (ELD) determines low price process regarding a power system through dispatching the power generation sources in order according to supply the load demand. In this paper, one of the most known electrical problems has been displayed by the (ELD). Various methods have been used to make the ELD solutions better, most well-known employing meta-heuristic algorithms. The aim of paper is to find the optimal or near-optimal ELD fuel cost (fuel cost with the minimum cost) by involving a newly created meta-heuristic algorithm, mainly Salp Swarm Algorithm (SSA). Using four test systems generating datasets, the swarm intelligence (SI) has contributed in creating the notion of SSA to get the required value of the present approach. Moreover, it will be measured and contrasted with other similar types or with those of the same significant style that are available in the literature. Accordingly, the results make it clear that the SSA is able to represent the ELD problem and it able to obtain acceptable solutions.

References
  1. S. Sarangi, Particle Swarm Optimisation applied to Economic Load Dispatch problem, 2009.
  2. B. Jeddi, V. Vahidinasab, Energy Conversion and Management 78 (2014) 661-675.
  3. V. Hosseinnezhad, M. Rafiee, M. Ahmadian, M.T. Ameli, International Journal of Electrical Power & Energy Systems 63 (2014) 311-322.
  4. E.E. Elattar, International Journal of Electrical Power & Energy Systems 69 (2015) 18-26.
  5. L. dos Santos Coelho, T.C. Bora, V.C. Mariani, International Journal of Electrical Power & Energy Systems 57 (2014) 178-188.
  6. V.K. Kamboj, S. Bath, J. Dhillon, Neural Computing and Applications 27 (2016) 1301-1316.
  7. M. Basu, International Journal of Electrical Power & Energy Systems 69 (2015) 304-312.
  8. B. Mandal, P.K. Roy, S. Mandal, International journal of electrical power & energy systems 57 (2014) 1-10.
  9. L.I. Wong, M. Sulaiman, M. Mohamed, M.S. Hong, Grey Wolf Optimizer for solving economic dispatch problems, 2014 IEEE International Conference on Power and Energy (PECon), IEEE, 2014, pp. 150-154.
  10. S. Banerjee, D. Maity, C.K. Chanda, International Journal of Electrical Power & Energy Systems 73 (2015) 456-464.
  11. M. Subathra, S.E. Selvan, T.A.A. Victoire, A.H. Christinal, U. Amato, IEEE Systems Journal 9 (2014) 1031-1044.
  12. A.I. HAMMOURI, B. ALRIFAI, Journal of Theoretical & Applied Information Technology 70 (2014).
  13. I.A. Doush, M.A. Al-Betar, M.A. Awadallah, A.I. Hammouri, M. Ra’ed, S. ElMustafa, H. ALkhraisat, Journal of Intelligent Systems (2018).
  14. A.I. Hammouri, E.T.A. Samra, M.A. Al-Betar, R.M. Khalil, Z. Alasmer, M. Kanan, A Dragonfly Algorithm for Solving Traveling Salesman Problem, 2018 8th IEEE International Conference on Control System, Computing and Engineering (ICCSCE), IEEE, 2018, pp. 136-141.
  15. A.I. Hammouri, M. Alweshah, E.A. Hezzam, M. Asmaran, International Journal of Soft Computing 12 (2017) 103-111.
  16. I.A. Doush, M.A. Al-Betar, M.A. Awadallah, E. Santos, A.I. Hammouri, M. Mafarjeh, Z. AlMeraj, Applied Soft Computing (2019) 105861.
  17. M. Alweshah, A.I. Hammouri, S. Tedmori, International Journal of Data Mining, Modelling and Management 9 (2017) 142-162.
  18. M. Alweshah, H. Rashaideh, A.I. Hammouri, H. Tayyeb, M. Ababneh, International journal of data analysis techniques and strategies 9 (2017) 237-247.
  19. H. Al Nsour, M. Alweshah, A.I. Hammouri, H. Al Ofeishat, S. Mirjalili, Journal of Intelligent Systems.
  20. A.I. Hammouri, S. Abdullah, Biogeography-Based optimisation for data clustering, 13th International Conference on New Trends in Intelligent Software Methodology Tools, and Techniques, SoMeT 2014, IOS Press, 2014, pp. 951-963.
  21. A.I. Hammouri, S. Abdullah, International Journal of Data Analysis Techniques and Strategies 8 (2016) 281-295.
  22. M.A. Al-Betar, M.A. Awadallah, I.A. Doush, A.I. Hammouri, M. Mafarja, Z.A.A. Alyasseri, The Journal of Supercomputing (2019) 1-44.
  23. S. Mirjalili, A.H. Gandomi, S.Z. Mirjalili, S. Saremi, H. Faris, S.M. Mirjalili, Advances in Engineering Software 114 (2017) 163-191.
  24. L. Madin, Marine Biology 25 (1974) 143-147.
  25. H.T. Ibrahim, W.J. Mazher, O.N. Ucan, O. Bayat, INTERNATIONAL JOURNAL OF COMPUTER SCIENCE AND NETWORK SECURITY 12 (2017) 13.
  26. R. Abbassi, A. Abbassi, A.A. Heidari, S. Mirjalili, Energy conversion and management 179 (2019) 362-372.
  27. B. Adarsh, T. Raghunathan, T. Jayabarathi, X.-S. Yang, Energy 96 (2016) 666-675.
  28. M. Modiri-Delshad, N.A. Rahim, Energy 77 (2014) 372-381.
  29. A.I. Selvakumar, K. Thanushkodi, IEEE transactions on power systems 22 (2007) 42-51.
  30. W.T. Elsayed, E.F. El-Saadany, IEEE Transactions on power systems 30 (2014) 2179-2189.
  31. I. Ciornei, E. Kyriakides, IEEE Transactions on power systems 27 (2011) 233-242.
  32. D.C. Secui, Energy Conversion and Management 89 (2015) 43-62.
  33. S. Pothiya, I. Ngamroo, W. Kongprawechnon, Energy Conversion and Management 49 (2008) 506-516.
  34. T.A.A. Victoire, A.E. Jeyakumar, Electric Power Systems Research 71 (2004) 51-59.
  35. P.K. Roy, S. Bhui, C. Paul, Applied Soft Computing 24 (2014) 109-125.
  36. J. Zhan, Q. Li, Q. Hu, Q. Wu, C. Li, H. Qiu, M. Zhang, S. Yin, Chemical Communications 50 (2014) 722-724.
  37. N. Sinha, R. Chakrabarti, P. Chattopadhyay, IEEE Transactions on evolutionary computation 7 (2003) 83-94.
  38. C.-C. Kuo, Energy Conversion and Management 49 (2008) 3571-3577.
  39. K.T. Chaturvedi, M. Pandit, L. Srivastava, IEEE transactions on power systems 23 (2008) 1079-1087.
  40. B. Panigrahi, V.R. Pandi, IET generation, transmission & distribution 2 (2008) 556-565.
  41. Z.-L. Gaing, IEEE transactions on power systems 18 (2003) 1187-1195.
  42. B. Panigrahi, V.R. Pandi, S. Das, Energy conversion and management 49 (2008) 1407-1415.
  43. M. Modiri-Delshad, S.H.A. Kaboli, E. Taslimi-Renani, N.A. Rahim, Energy 116 (2016) 637-649.
  44. G. Binetti, A. Davoudi, D. Naso, B. Turchiano, F.L. Lewis, IEEE Transactions on Industrial Informatics 10 (2013) 1124-1132.
  45. A. Bhattacharya, P.K. Chattopadhyay, IEEE transactions on power systems 25 (2009) 1064-1077.
  46. A.I. Selvakumar, K. Thanushkodi, Electric Power Systems Research 79 (2009) 8-16.
Index Terms

Computer Science
Information Sciences

Keywords

Economic Load Dispatch Salp Swarm-Based Algorithm swarm intelligence optimization meta-heuristic population based algorithm.