CFP last date
20 January 2025
Reseach Article

Creation and Comparison of Query Mix

by M. Abdul Qadoos Bilal, Baoning Niu, Muzammil-ur-Rehman, Nazir Ahmed, Akbar Hussain, Bilal Ahmed, Muhammad Amjad, Saima Kanwal
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 177 - Number 21
Year of Publication: 2019
Authors: M. Abdul Qadoos Bilal, Baoning Niu, Muzammil-ur-Rehman, Nazir Ahmed, Akbar Hussain, Bilal Ahmed, Muhammad Amjad, Saima Kanwal
10.5120/ijca2019919674

M. Abdul Qadoos Bilal, Baoning Niu, Muzammil-ur-Rehman, Nazir Ahmed, Akbar Hussain, Bilal Ahmed, Muhammad Amjad, Saima Kanwal . Creation and Comparison of Query Mix. International Journal of Computer Applications. 177, 21 ( Dec 2019), 33-36. DOI=10.5120/ijca2019919674

@article{ 10.5120/ijca2019919674,
author = { M. Abdul Qadoos Bilal, Baoning Niu, Muzammil-ur-Rehman, Nazir Ahmed, Akbar Hussain, Bilal Ahmed, Muhammad Amjad, Saima Kanwal },
title = { Creation and Comparison of Query Mix },
journal = { International Journal of Computer Applications },
issue_date = { Dec 2019 },
volume = { 177 },
number = { 21 },
month = { Dec },
year = { 2019 },
issn = { 0975-8887 },
pages = { 33-36 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume177/number21/31022-2019919674/ },
doi = { 10.5120/ijca2019919674 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-07T00:46:31.649050+05:30
%A M. Abdul Qadoos Bilal
%A Baoning Niu
%A Muzammil-ur-Rehman
%A Nazir Ahmed
%A Akbar Hussain
%A Bilal Ahmed
%A Muhammad Amjad
%A Saima Kanwal
%T Creation and Comparison of Query Mix
%J International Journal of Computer Applications
%@ 0975-8887
%V 177
%N 21
%P 33-36
%D 2019
%I Foundation of Computer Science (FCS), NY, USA
Abstract

In the database management system, it is significant to show the results of any query with the lowest response time. This research conduct on the Postgresql database queries on the TPC-H benchmark for calculating the response time of the multiple queries. For acquiring this phenomenon, it is essential to adapt such practice from which more than one queries at the same time may be executed to get benefits of parallel processing. By inspiring this idea, this paper presents the query mix, which is a combination of more than two queries for multiprogramming level 3 (MPL-3), which shows that there are three randomly selected queries in each query mix. This research contained two different experiments, in the former experiment, each query executed in isolation, and in the second experiment, the combination of three queries executed simultaneously for acquiring MPL3. The results show that there is a strong correlation between the individual query and the query mix.

References
  1. A. Mateen, B. Raza, M. Sher, M. M. Awais, N. Mustapha, Workload Management: a technological perspective with respect to self-characteristics, Artif. Intell.Rev.41(4)(2014) 463-489
  2. B. Raza, A. Mateen, M. Sher, M. M. Awais, Survey on Automatic workload management: Algorithms, Techniques and Models, J.Compute, 3(7) (2011) 29-38.
  3. J. Zhang, N. Baoning., “A Similarity Model for Prediction Response Time of Concurrent Queries”,
  4. J. Zhang, N. Baoning.,” A Clustering-based Sampling Method for Building Query Response Time Models”, International Journal of Computer Systems Science & Engineering, 2017.
  5. M. Amjad, J. Zhang., “GScheduler: A Query Scheduler Based on Query Interaction”,
  6. S. Guirguis, M. A. Ashraf, P. K. Chrysanthis, and A. Labrinidis, “Adaptive Scheduling of Web Transactions,” in Proc. ICDC’ 09, 2009, pp. 357-368.
  7. A. C. Koing, B. Ding, S. Chaudhri, and V. R. Narasayya, “A Statistical Approach toward Robust progress Estimation”, in Proc. VLDB’ 11, 2011, pp. 382-393.
  8. J. Duggan, U. Cetintemel, O. Papaemmenouil, and E. Upfal, “Performace prediction for concurrent Database workload”, in Proc. SIGMOD’ 11, 2011, pp.337-348.
  9. M. B. Sheikh, U. F. Minhas, O. Z. Khan, and A. Aboulnaga, “A Bayesian Approach to online performance Modeling for Database Appliance using Gaussian Models”, in Proc. ICAC’11, 2011, pp. 121-130.
  10. M. Ahmed, S. Duan, A. Aboulnaga and S. Babu, “Predicting Prediction Time of Batch Queries Workload using Interaction-Aware Models and Simulation,” in Proc. EDBT’11, 2011, pp 449-460.
  11. M. Ahmed, A. Aboulnaga and S. Babu, and K. Munagala, “Modeling and Exploiting Query Interaction in Database system,” in Proc. CKIM’08, 2008, pp. 183-192.
  12. M. Ahmed, A. Aboulnaga and S. Babu, and K. Munagala, “Interaction-Aware Scheduling of Report Generation Workload,” VLDB Journal, vol.24, pp. 589-615, Aug. 2011.
  13. A. Ganapathi, H. A. Kuno, U. Dayal, and J. L. Wiener, “Predicting Multiple Metrics for Queries: Better Decisions Enabled by Machine Learning,” in Proc. ICDE’09, 2009, pp. 592-603.
  14. M.Akdere, U. Cetintemel, M. Roindata, and E. Upfal, “Learning-Based Query Performance Modeling and Prediction,” in Proc. ICDE’12, 2012, pp. 390-401.
  15. B.Tozer, T. Brecht, and A. Aboulnaga,”Q-Cop: Avoiding Bad Query Mixes to minimize client time out under heavy load,” in Proc. ICDE’10, 2010, pp. 397-408.
  16. .Duggan, O. Papaemmanouil, U. Cetintemel, and E. Upfal, “Contender: A resource Modeling Approach For Concurrent Query performance prediction,” in Proc. EDBT’14,2014, pp. 109-120.
  17. C.Macdonald, N.Tonellotto, I. Ounis., “Learning to Predict Response Times for Online Query Scheduling”, in proc. SIGIR’,2012,Portland,Oregon, USA.
Index Terms

Computer Science
Information Sciences

Keywords

Query Mix Execution Time