CFP last date
20 January 2025
Reseach Article

Support of Arabic Sign Language Machine Translation based on Morphological processing

by Sawsan Asjea, O. Ismail, Souheil Khawatmi
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 177 - Number 15
Year of Publication: 2019
Authors: Sawsan Asjea, O. Ismail, Souheil Khawatmi
10.5120/ijca2019919564

Sawsan Asjea, O. Ismail, Souheil Khawatmi . Support of Arabic Sign Language Machine Translation based on Morphological processing. International Journal of Computer Applications. 177, 15 ( Nov 2019), 28-36. DOI=10.5120/ijca2019919564

@article{ 10.5120/ijca2019919564,
author = { Sawsan Asjea, O. Ismail, Souheil Khawatmi },
title = { Support of Arabic Sign Language Machine Translation based on Morphological processing },
journal = { International Journal of Computer Applications },
issue_date = { Nov 2019 },
volume = { 177 },
number = { 15 },
month = { Nov },
year = { 2019 },
issn = { 0975-8887 },
pages = { 28-36 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume177/number15/30976-2019919564/ },
doi = { 10.5120/ijca2019919564 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-07T00:45:59.388667+05:30
%A Sawsan Asjea
%A O. Ismail
%A Souheil Khawatmi
%T Support of Arabic Sign Language Machine Translation based on Morphological processing
%J International Journal of Computer Applications
%@ 0975-8887
%V 177
%N 15
%P 28-36
%D 2019
%I Foundation of Computer Science (FCS), NY, USA
Abstract

This paper presents a morphological processing system as a part of arabic text to arabic sign language machine translation system. This morphological processing depends on Farasa analyzer tool, Stanford model and Arramooz lexicon. The characteristics of sign language are achieved to get intermediate arabic sign language sentences. Then these sentences are searched in a sign language dictionary word by word to display the related signs images if available, or to display letters of word using finger spelling alphabet images. The proposed system is tested on many non-vowelized arabic sentences, and good results and high accuracy are obtained.

References
  1. Okpor, M. D. 2014. Machine Translation Approaches: Issues and Challenges. IJCSI International Journal of Computer Science Issues. 11(5). 159-165.
  2. Ryding, K. C. 2005. A reference grammar of modern standard Arabic (chapter 3.Arabic Word Structure: An Overview). Cambridge University press, 44-56.‏
  3. Arramooz Alwaseet: Arabic Dictionary for Morphological analysis, http://arramooz.sourceforge.net/ [Date Accessed 16-3-2019].
  4. The Meanings Dictionary, http://www.almaany.com/ [Date Accessed 23- 9 -2019].
  5. Ishkewy, H., Harb H., Farahat, H. 2014. Azhary: An arabic lexical ontology. International Journal of Web & Semantic Technology (IJWesT). 5(4). 71-82.
  6. Abdel-Fattah, M. A. 2005. Arabic sign language: a perspective. Journal of deaf studies and deaf education. 10(2). 212-221.‏
  7. Samrine, S., El Benali M., Standard Arabic Sign Language Rules. Qatar National Library ISBN: 99921- 53- 41- 0.
  8. Almohimeed, A., Wald M., Damper, I., 2011. Arabic text to Arabic sign language translation system for the deaf and hearing-impaired community. The Second Workshop on Speech and Language Processing for Assistive Technologies. Association for Computational Linguistics, 101-109.‏
  9. Brour, M., Benabbou, A., 2019. ATLASLang MTS 1: Arabic Text Language into Arabic Sign Language Machine Translation System. Procedia computer science. 148. 236-245.‏
  10. El- Alfi, A., El- Basuony, M., El- Atawy, S. 2014. Intelligent Arabic text to Arabic Sign Language Translation for Easy Deaf Communication. International Journal of Computer Applications. 92(8). 22-29.
  11. Abu Shquier, M. M., Atoum, M. S., Abu Shqeer, O. M. 2017. Arabic to English Machine Translation. Proceedings of the New Trends in Information Technology (NTIT). 118-124.‏
  12. Hattab, M., haddad, B., yaseen, M., duraidi, A. 2009. Addaall arabic search engine: Improving search based on combination of morphological analysis and generation considering semantic patterns. In The second International Conference on Arabic Language Resources and Tools, Cairo, Egypt, 159-162.
  13. Lakhfif, A., Laskri, M.T. 2016. A frame-based approach for capturing semantics from Arabic text for text-to-sign language MT. International Journal of Speech Technology, 19(2). 203-228.‏
  14. Boudchiche, M., MazrouI, A., Bebah, M., Lakhouaja, A., Boudlal, A. 2017. AlKhalil Morpho Sys 2: A robust Arabic morpho-syntactic analyzer. Journal of King Saud University-Computer and Information Sciences, 29(2), 141-146.‏
  15. Abdelali, A., Darwish, K., Durrani, N., Mubarak, H. 2016. Farasa: A fast and furious segmenter for arabic. Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Demonstrations, 11-16.‏
  16. FARASA : QCRI Arabic Language Technologies Tools & Demos, Qatar Computing Research Institute, http://qatsdemo.cloudapp.net/farasa/demo.html. [Date Accessed 16- 3 -2019].
  17. Manning, C., Surdeanu, M., Bauer, J. 2014. The Stanford CoreNLP natural language processing toolkit. Proceedings of 52nd annual meeting of the association for computational linguistics: system demonstrations, 55-60.‏
  18. Stanford CoreNLP: http://corenlp.run/. [Date Accessed 16 -3 -2019].
  19. ‏ Khadim, S.M., Abdulmunim, M.E. 2013. Design a Computerized Lexicon for Machine Translation from Arabic to English. University of Technology. Baghdad, 191-202.
  20. Sawsan A., Ismail O., Khawatmi S., 2018. Prototype System Construction for Transfer Based Machine Translation Using Colored Petri Net Case Study (Translate Arabic language into Arabic Sign Language). Res. J. of Aleppo Univ., Engineering Science Series (2). 139.1-22.
Index Terms

Computer Science
Information Sciences

Keywords

Machine Translation (MT) Morphological Analysis Arabic sign language.