CFP last date
20 January 2025
Reseach Article

Towards a Semantically Driven E-learning Framework

by Suhare M. Solaiman, Imtiaz Hussain Khan, Muazzam Ahmed Siddiqui
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 177 - Number 11
Year of Publication: 2019
Authors: Suhare M. Solaiman, Imtiaz Hussain Khan, Muazzam Ahmed Siddiqui
10.5120/ijca2019919510

Suhare M. Solaiman, Imtiaz Hussain Khan, Muazzam Ahmed Siddiqui . Towards a Semantically Driven E-learning Framework. International Journal of Computer Applications. 177, 11 ( Oct 2019), 22-28. DOI=10.5120/ijca2019919510

@article{ 10.5120/ijca2019919510,
author = { Suhare M. Solaiman, Imtiaz Hussain Khan, Muazzam Ahmed Siddiqui },
title = { Towards a Semantically Driven E-learning Framework },
journal = { International Journal of Computer Applications },
issue_date = { Oct 2019 },
volume = { 177 },
number = { 11 },
month = { Oct },
year = { 2019 },
issn = { 0975-8887 },
pages = { 22-28 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume177/number11/30942-2019919510/ },
doi = { 10.5120/ijca2019919510 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-07T00:45:35.787806+05:30
%A Suhare M. Solaiman
%A Imtiaz Hussain Khan
%A Muazzam Ahmed Siddiqui
%T Towards a Semantically Driven E-learning Framework
%J International Journal of Computer Applications
%@ 0975-8887
%V 177
%N 11
%P 22-28
%D 2019
%I Foundation of Computer Science (FCS), NY, USA
Abstract

E-learning offers great benefits over the conventional learning process. However, the huge unstructured information, which is freely available on the Web poses significant challenges in accessing the desired information in a timely manner. To tackle this problem different information retrieval (IR) approaches have been proposed in literature. These approaches are predominantly influenced by classical keyword-based IR techniques. However, with recent technological advances and a flood of information on the Web, the performance of keyword-based IR techniques has greatly suffered. Therefore, recently some more intelligent IR techniques have been proposed to enhance the utility of e-learning systems. In this study, a semantically oriented ontology-based personalized framework is proposed for effective e-learning. The proposed framework is implemented and its effectiveness is thoroughly assessed as a case study to learn Java programming language. The proposed system is evaluated on an indigenous medium-sized corpus ((2600 documents) in terms of standard accuracy measures for IR. The findings in this paper reveal that semantic based IR for e-learning is a robust methodology and it can advance the field of e-learning in an elegant manner.

References
  1. Baazaoui, H., Aufaure, M. A., Soussi, R., Laboratoy, R. G., & Manouba, E. C. U. (2008). Towards an on-line semantic information retrieval system based on fuzzy ontologies. Journal of Digital Information Management, 6(5), 375.
  2. Singh, P., Dhawan, S., Agarwal, S., & Thakur, N. (2015). Implementation of an efficient fuzzy logic based information retrieval system. arXiv preprint arXiv:1503.03957.
  3. Linta, S. R., Khan, R., & Ahmed, F. (2011). Towards e-learning management system using semantic web technologies.
  4. Garrido, A., & Morales, L. (2014). E-Learning and intelligent planning: improving content personalization. Tecnologias del Aprendizaje, IEEE Revista Iberoamericana de, 9(1), 1-7.
  5. Hatakka, M., Avdic, A., & Andersson, A. (2007). SCORM: from the perspective of the course designer: a critical review. In ECEL 2007: 6th European Conference on E-Learning: Copenhagen Business School, Denmark, 4-5 October 2007 (pp. 307). Academic Conferences Limited.
  6. Raspopović, M., & Cvetanović, S. (2011). Implementation of adaptive e-Learning through Workflow Technology.
  7. Rosenberg, M. J. (2001). E-learning: strategies for delivering knowledge in the digital age, (3). New York: McGraw-Hill.
  8. Acampora, G., Loia, V., & Gaeta, M. (2010). Exploring e-learning knowledge through ontological memetic agents. Computational Intelligence Magazine, IEEE, 5(2), 66-77.
  9. Tolea, E. E. (2012). A prototype for intelligent computer based training systems in business. Global Journal on Technology, 2.
  10. Alsultanny, Y. A. (2006). E-learning system overview based on semantic web. The Electronic Journal of E-Learning, 4(2), 111-118.
  11. Dicheva, D. (2008). Ontologies and semantic web for e-learning. In Handbook on information technologies for education and training (pp. 47-65). Springer Berlin Heidelberg.
  12. Oneto, L., Abel, F., Herder, E., & Smits, D. (2009). Making today’s learning management systems adaptive. In Learning Management Systems meet Adaptive Learning Environments, Workshop at European Conference on Technology Enhanced Learning (ECTEL).
  13. Manning, C. D., Raghavan, P., & Schütze, H. (2008). Introduction to information retrieval. New York, NY, Cambridge university press.
  14. Baeza-Yates, R., & Ribeiro-Neto, B. (1999). Modern information retrieval. Harlow, England: Addison-Wesley.
  15. Khan, L., McLeod, D., & Hovy, E. (2004). Retrieval effectiveness of an ontology-based model for information selection. The International Journal on Very Large Data Bases, 13(1), 71-85.
  16. Fernández, M., Cantador, I., López, V., Vallet, D., Castells, P., & Motta, E. (2011). Semantically enhanced information retrieval: An ontology-based approach. Web Semantics: Science, Services and Agents on the World Wide Web, 9(4), 434-452.
  17. Ishii, N., Suzuki, Y., Ito, M., & Hara, T. (2015). A new approach to web mining: A search engine offering result of no assumption. Information Engineering Express, 1(2), 51-59.
  18. Thenmalar, S., & Geetha, T. V. (2014). Enhanced ontology-based indexing and searching. Journal of Information Management, 66(6), 678-696.
  19. Salton, G. (1971). The SMART retrieval system: Experiments in automatic document processing. Upper Saddle River, NJ, Prentice-Hall, Inc.
  20. Salton, G., & Buckley, C. (1988). Term-weighting approaches in automatic text retrieval. Information Processing and Management, 24(5), 513-523.
  21. Voorhees, E. M. (1994). Query expansion using lexical-semantic relations. In SIGIR’94 (pp. 61-69). Springer London.
  22. Andreou, A. (2005). Ontologies and query expansion. (Master’s thesis). School of Informatics, University of Edinburgh.
  23. Fu, G., Jones, C. B., & Abdelmoty, A. I. (2005). Ontology-based spatial query expansion in information retrieval. In On the move to meaningful internet systems 2005: CoopIS, DOA, and ODBASE (pp. 1466-1482). Springer Berlin Heidelberg.
  24. Gao, G., Liu, Y. S., Wang, M., Gu, M., & Yong, J. H. (2015). A query expansion method for retrieving online BIM resources based on Industry Foundation Classes. Automation in Construction, 56, 14-25.
  25. Xu, J., & Croft, W. B. (1996). Query expansion using local and global document analysis. In Proceedings of the 19th annual international ACM SIGIR conference on Research and development in information retrieval (pp. 4-11). ACM.
  26. Xu, J., & Croft, W. B. (2000). Improving the effectiveness of information retrieval with local context analysis. ACM Transactions on Information Systems (TOIS), 18(1), 79-112.
  27. Segura, N. A., García-Barriocanal, E., & Prieto, M. (2011). An empirical analysis of ontology-based query expansion for learning resource searches using MERLOT and the Gene ontology. Knowledge-Based Systems, 24(1), 119-133.
  28. Vallet, D., Fernández, M., & Castells, P. (2005). An ontology-based information retrieval model. In The Semantic Web: Research and Applications (pp. 455-470). Springer Berlin Heidelberg.
  29. Karthikeyan, A. (2010). An novel approach using semantic information retrieval for Tamil documents. International Journal of Engineering Science and Technology, 2(9), 4424-4433.
  30. Kara, S., Alan, Ö., Sabuncu, O., Akpınar, S., Cicekli, N. K., & Alpaslan, F. N. (2012). An ontology-based retrieval system using semantic indexing. Information Systems, 37(4), 294-305.
  31. Zidi, A., & Abed, M. (2013). A generalized framework for ontology-based information retrieval: Application to a public-transportation system. In Advanced Logistics and Transport (ICALT), 2013 International Conference on (pp. 165-169). IEEE.
  32. De Ribaupierre, H., & Falquet, G. (2014). User-centric design and evaluation of a semantic annotation model for scientific documents. In Proceedings of the 14th International Conference on Knowledge Technologies and Data-driven Business. ACM.
  33. Tulasi, R. L., Rao, S. M. & Gouda, R. G. (2013). Study of e-learning information retrieval model based on ontology. International Journal of Computer Applications 61(17):9-13.
  34. Barreau, D., & Nardi, B. A. (1995). Finding and reminding: file organization from the desktop. ACM SigChi Bulletin, 27(3), 39-43.
  35. Guangzuo, C., Fei, C., Hu, C., & Shufang, L. (2004). OntoEdu: a case study of ontology-based education grid system for e-learning. In GCCCE2004 International conference, Hong Kong.
  36. Katifori, A., Vassilakis, C., Lepouras, G., & Torou, E. (2015). Effectiveness of visualization for information retrieval through ontologies with entity evolution: The impact of ontology modeling. International Journal of Information Retrieval Research (IJIRR), 5(2), 66-91.
  37. Katifori, A., Vassilakis, C., Lepouras, G., Torou, E., & Halatsis, C. (2014). Visualization method effectiveness in ontology-based information retrieval tasks involving entity evolution. In Semantic and Social Media Adaptation and Personalization (SMAP), 9th International Workshop on (pp. 14-19). IEEE.
  38. Wu, Z., & Palmer, M. (1994). Verbs semantics and lexical selection. In Proceedings of the 32nd annual meeting on Association for Computational Linguistics (pp. 133-138). Association for Computational Linguistics.
  39. Pedersen, T. (2010). Information content measures of semantic similarity perform better without sense-tagged text. In Human Language Technologies: The 2010 Annual Conference of the North American Chapter of the Association for Computational Linguistics (pp. 329-332). Association for Computational Linguistics.
  40. Resnik, P. (1995). Using information content to evaluate semantic similarity in a taxonomy. Proceedings of the 14th International Joint Conference on Artificial Intelligence - Volume 1, 448--453. Morgan Kaufmann Publishers.
  41. Lin, D. (1998). An information-theoretic definition of similarity. In ICML 98, 296-304.
  42. Ukkonen, E. (1985). Algorithms for approximate string matching. Information and Control, 64(1), 100-118.
  43. Levenshtein, V. I. (1966). Binary codes capable of correcting deletions, insertions, and reversals. In Soviet Physics Doklady, 10(8), 707-710.
  44. Dice, L. R. (1945). Measures of the amount of ecologic association between species. Ecology, 26(3), 297-302.
  45. Salton, G. and M. McGill (1983). Introduction to modern information retrieval. New York, NY: McGraw-Hill.
  46. Lopez, V., Uren, V., Sabou, M., & Motta, E. (2011). Is question answering fit for the semantic web? A survey. Semantic Web, 2(2), 125-155.
  47. Gao, G., Liu, Y. S., Wang, M., Gu, M., & Yong, J. H. (2015). A query expansion method for retrieving online BIM resources based on Industry Foundation Classes. Automation in Construction, 56, 14-25.
  48. Lund, A.M. (2001). Measuring usability with the use questionnaire. STC Usability SIG Newsletter, 8(2).
Index Terms

Computer Science
Information Sciences

Keywords

Information retrieval Semantic similarity Semantic annotation Keywords-based retrieval Ontology Query expansion