CFP last date
20 January 2025
Reseach Article

Soft Tritopological Spaces

by Asmhan Flieh Hassan
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 176 - Number 9
Year of Publication: 2017
Authors: Asmhan Flieh Hassan
10.5120/ijca2017915573

Asmhan Flieh Hassan . Soft Tritopological Spaces. International Journal of Computer Applications. 176, 9 ( Oct 2017), 26-30. DOI=10.5120/ijca2017915573

@article{ 10.5120/ijca2017915573,
author = { Asmhan Flieh Hassan },
title = { Soft Tritopological Spaces },
journal = { International Journal of Computer Applications },
issue_date = { Oct 2017 },
volume = { 176 },
number = { 9 },
month = { Oct },
year = { 2017 },
issn = { 0975-8887 },
pages = { 26-30 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume176/number9/28585-2017915573/ },
doi = { 10.5120/ijca2017915573 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-07T00:41:11.446167+05:30
%A Asmhan Flieh Hassan
%T Soft Tritopological Spaces
%J International Journal of Computer Applications
%@ 0975-8887
%V 176
%N 9
%P 26-30
%D 2017
%I Foundation of Computer Science (FCS), NY, USA
Abstract

The concept of Soft Tritopological Space is introduced in this paper, which we defined it over an initial universe with a fixed set of parameters. Also some new definitions of soft open sets in soft tritopological spaces are introduced and investigated, which are called soft τ1τ2τ3-open set, soft τ1τ2τ3-pre-open set, soft τ1τ2τ3-α-open set (soft tri-α-open set) and soft δ∗-open set. Consequently we can say that the soft tritopological spaces are more comprehensive and generalized than the classical tritopological spaces.

References
  1. D. Molodtsov, Soft set theory first results, Comput. Math. Appl. 37 (1999) 19–31.
  2. P.K. Maji, A. R. Roy, R. Biswas, An application of soft sets in a decision making problem, Comput. Math. Appl. 44 (2002) 1077-1083.
  3. D. Pie, D. Miao, From soft sets to information systems, Granu. comput. IEEE Inter. Conf. 2 (2005) 617–621.
  4. M.I. Ali, F. Feng, X.Y. Liu, W.K. Min, M. Shabir, On some new operations in soft set theory, Comput. Math. Appl. 57 (2009) 1547–1553.
  5. M. I. Ali, M. Shabir, M. Naz, Algebraic structures of soft sets associated with new operations, Comput. Math. Appl. 61 (2011) 2647–2654.
  6. P.K. Maji, R. Biswas, A.R. Roy, Soft set theory, Comput. Math. Appl. 45 (2003) 555-562.
  7. M. Shabir, M. Naz, On soft topological spaces, Comput. Math. Appl. 61(2011) 1786–1799.
  8. S. Hussain and B. Ahmad, Some properties of soft topological spaces, Comput. Math. Appl. 62 (2011) 4058-4067.
  9. N. Cagman, S. Karatas and S. Enginoglu, Soft topology, Comput. Math. Appl. 62 (2011), 351-358.
  10. W. K. Min, A note on soft topological spaces, Comput. Math. Appl. 62 (2011) 3524-3528.
  11. J.C. Kelly, Bitopological Spaces, proc. London Math. Soc; 13 (1963) 71-83.
  12. S. Lal, Pairwise concepts in bitopological spaces, J. Aust. Math. Soc. (Ser.A), 26 (1978) 241-250.
  13. E. P. Lane, Bitopological spaces and quasi-uniform spaces, Proc. London Math. Soc. 17 (1967) 241-256.
  14. C. W. Patty, Bitopological spaces, Duke Math. J. 34 (1967) 387-392.
  15. W. J. Pervin, Connectedness in bitopological spaces, Indag. Math. 29 (1967) 369-372.
  16. I. L. Reilly, On bitopological separation properties, Nanta Math. 5 (1972) 14-25.
  17. M.K. Singal, Asha Rani Singal, Some more separation axioms in bitopological spaces, Ann.Soc. Sci. Bruxelles, 84 (1970) 207-230.
  18. Basavaraj M. Ittanagi, Soft Bitopological Spaces, Comp. and Math. with App., 107 (2014) 1-4.
  19. G. Senel, The Theory of Soft Ditopological Spaces, International Journal of Computer Applications, 150 (2016) 0975 - 8887.
  20. T. S. Dizman, A. Sostak, S. Yuksel, Soft Ditopological Spaces, Filomat 30:1, (2016) 209–222.
  21. M. Kovar, On 3-Topological version of Thet- Reularity, Internat.J. Matj, Sci., 23 (2000) 393- 398.
  22. A. Luay, Tritopological spaces, Journal of Babylon University, 9 (2003) 33-45.
  23. Asmhan F. H., d^*-open set in tritopological spaces, M.Sc. thesis, Kufa University. (2004).
  24. F. Feng, Y.B. Jun, X.Z. Zhao, Soft semi rings, Computers and Math. with Appl. 56 (2008) 2621–2628.
  25. G. Senel, N. Çagman, Soft closed sets on soft bitopological space. Journal of new results in science, 5 (2014) 57-66.
Index Terms

Computer Science
Information Sciences

Keywords

Soft set Soft topological space Soft bitopological space Soft tritopological space soft τ1τ2τ3-open set soft τ1τ2τ3-pre-open set soft τ1τ2τ3-α-open set (or soft tri-α-open set) soft δ∗-open set.