CFP last date
20 February 2025
Reseach Article

MES – Modern Encryption Standard

by Awnon Bhowmik, Unnikrishnan Menon
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 176 - Number 36
Year of Publication: 2020
Authors: Awnon Bhowmik, Unnikrishnan Menon
10.5120/ijca2020920479

Awnon Bhowmik, Unnikrishnan Menon . MES – Modern Encryption Standard. International Journal of Computer Applications. 176, 36 ( Jul 2020), 21-27. DOI=10.5120/ijca2020920479

@article{ 10.5120/ijca2020920479,
author = { Awnon Bhowmik, Unnikrishnan Menon },
title = { MES – Modern Encryption Standard },
journal = { International Journal of Computer Applications },
issue_date = { Jul 2020 },
volume = { 176 },
number = { 36 },
month = { Jul },
year = { 2020 },
issn = { 0975-8887 },
pages = { 21-27 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume176/number36/31435-2020920479/ },
doi = { 10.5120/ijca2020920479 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-07T00:44:21.072448+05:30
%A Awnon Bhowmik
%A Unnikrishnan Menon
%T MES – Modern Encryption Standard
%J International Journal of Computer Applications
%@ 0975-8887
%V 176
%N 36
%P 21-27
%D 2020
%I Foundation of Computer Science (FCS), NY, USA
Abstract

As mathematical theory has evolved and computing capabilities have improved, what initially seemed to be adequately difficult trapdoor functions, were deemed not to be later. In this paper, a new block-encryption scheme named Modern Encryption Standard (MES) is proposed based on the multiple concepts arising from number theory for a highly secure and fast cryptosystem that can be considered as an alternative to the existing systems. This is a block cipher like AES, but the inherent algorithm is quite different. The security of the proposed MES algorithm stands on the fundamentals of the Chinese Remainder Theorem, Cantor Pairing Function and the Prime Number Theorem for creating an ingenious trapdoor function. Breaking this algorithm proves to be quite a daunting obstacle to overcome for an unwelcome interceptor.

References
  1. Ariyama, K., & Toyoshima, H. (1995). Hardware implementation of Chinese remainder theorem using redundant binary representation. (pp. 552-561). Sakai, Japan: IEEE. doi:https://doi.org/10.1109/VLSISP.1995.527526
  2. Chen, J., & Yao, R. (2011). Efficient CRT-based residue-to-binary converter for the arbitrary moduli set. Science China Information Sciences, 54(1), 70-78. doi:https://doi.org/10.1007/s11432-010-4133-3
  3. Chung-Hsien, W., Jin-Hua, H., & Cheng-Wen, W. (2001). RSA cryptosystem design based on the Chinese remainder theorem. Proceedings of the 2001 Asia and South Pacific Design Automation Conference, (pp. 391--395).
  4. Corless, R. M., Gonnet, G. H., Hare, D. E., Jeffrey, D. J., & Knuth, D. E. (1996). On the LambertW function. Advances in Computational mathematics, 5(1), 329--359. doi:https://doi.org/10.1007/BF02124750
  5. Ding, C., Pei, D., & Salomaa, A. (1996). Chinese remainder theorem: Applications in Computing, Coding, Cryptography. World Scientific.
  6. Douguet, M., & McKeeney, N. M. (2012, October). USA Patent No. 8,280,041.
  7. Galbraith, S. D. (2012). Towards a rigorous analysis of Pollard rho. In S. D. Galbraith, Mathematics of Public Key Cryptography (pp. 272-273). Cambridge University Press.
  8. Goldstein, L. J. (1973). A history of the prime number theorem. The American Mathematical Monthly, 80(6), 599--615.
  9. Grossschadl, J. (2000). The Chinese remainder theorem and its application in a high-speed RSA crypto chip. Proceedings 16th Annual Computer Security Applications Conference (ACSAC'00) (pp. 384--393). New Orleans, LA: IEEE. doi:https://doi.org/10.1109/ACSAC.2000.898851
  10. Henry, J. (2018, August 3). 3DES is Officially Being Retired. Retrieved from https://www.cryptomathic.com/news-events/blog/3des-is-officially-being-retired
  11. Lynn, B. (n.d.). The Chinese Remainder Theorem. Retrieved from Applied Crypto Group - Stanford: https://crypto.stanford.edu/pbc/notes/numbertheory/crt.html
  12. Miszczak, J. A. (2015, October). Shor's factoring algorithm. Quantiki. Retrieved from https://www.quantiki.org/wiki/shors-factoring-algorithm
  13. Pollard, J. M. (2008, October 24). Theorems on factorization and primality testing. Mathematical Proceedings of the Cambridge Philosophical Society, 76(3), 521-528. doi:https://doi.org/10.1017/S0305004100049252
  14. Shor, P. W. (1994). Algorithms for quantum computation: discrete logarithms and factoring. Proceedings 35th Annual Symposium on Foundations of Computer Science, (pp. 124-134).
  15. Szudzik, M. (2006). An Elegant Pairing Function. Washington, DC. Retrieved from http://szudzik.com/ElegantPairing.pdf
  16. Weisstein, E. W. (2002). Lambert W-function.
Index Terms

Computer Science
Information Sciences

Keywords

AES DES NIST MES modern encryption Modern Encryption Standard 3DES Triple DES Chinese Remainder Theorem Cantor Pairing Function Shor's Algorithm Pollard's Rho Algorithm