We apologize for a recent technical issue with our email system, which temporarily affected account activations. Accounts have now been activated. Authors may proceed with paper submissions. PhDFocusTM
CFP last date
20 December 2024
Reseach Article

Unsupervised Hybrid Algorithm to Detect Anomalies for Predicting Terrorists Attacks

by Francesco Curia
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 176 - Number 35
Year of Publication: 2020
Authors: Francesco Curia
10.5120/ijca2020920432

Francesco Curia . Unsupervised Hybrid Algorithm to Detect Anomalies for Predicting Terrorists Attacks. International Journal of Computer Applications. 176, 35 ( Jul 2020), 1-8. DOI=10.5120/ijca2020920432

@article{ 10.5120/ijca2020920432,
author = { Francesco Curia },
title = { Unsupervised Hybrid Algorithm to Detect Anomalies for Predicting Terrorists Attacks },
journal = { International Journal of Computer Applications },
issue_date = { Jul 2020 },
volume = { 176 },
number = { 35 },
month = { Jul },
year = { 2020 },
issn = { 0975-8887 },
pages = { 1-8 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume176/number35/31424-2020920432/ },
doi = { 10.5120/ijca2020920432 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-07T00:44:13.374852+05:30
%A Francesco Curia
%T Unsupervised Hybrid Algorithm to Detect Anomalies for Predicting Terrorists Attacks
%J International Journal of Computer Applications
%@ 0975-8887
%V 176
%N 35
%P 1-8
%D 2020
%I Foundation of Computer Science (FCS), NY, USA
Abstract

This work presents a hybrid approach for unsupervised algorithms (UHA), in order to extract information and patterns from data concerning terrorist attacks. The reference data are those of the Global Terrorism Database. The work presents an approach based on autoencoders and k-modes type clustering. The results obtained are examined through some metrics presented in the article and it is also considered methodologically how to determine a robust threshold for anomaly detection problems.

References
  1. Global Terrorism Database (GTD), http://www.start.umd.edu/gtd, 2017.
  2. Kumar, V., Mazzara, M., Lee, J., ”A Conjoint Application of Data Mining Techniques for Analysis of Global Terrorist Attacks - Prevention and Prediction for Combating Terrorism”, Published in SEDA 2018 Mathematics, Computer Science
  3. Bang, J.T., Basuchoudhary, A., David, A. J., Mitra, A. ”Predicting Terrorism: A Machine Learning Approach”, Working Paper, November 2017
  4. Verma, C., Malhotra, S., Verma, S. Verma, V.,”Predictive Modeling of Terrorist Attacks Using Machine Learning”,International Journal of Pure and Applied Mathematics 119(15), June 2018
  5. Saha, S., Kurian, A., Basu, A., Aladi, H., ”Future Terrorist Attack Prediction using Machine Learning Techniques”, Working Paper, May 2017
  6. Ozgul F., Erdem Z., Bowerman C., ”Prediction of Unsolved Terrorist Attacks Using Group Detection Algorithms”, Intelligence and Security Informatics. PAISI 2009.
  7. Sachan, A., Roy, D., ”TGPM: Terrorist Group Prediction Model for Counter Terrorism”, International Journal of Computer Applications 44(10):49-52 , April 2012
  8. Adnan, M., Rafi, M.,”Extracting patterns from Global Terrorist Dataset (GTD) Using Co-Clustering approach”, Journal of Independent Studies and Research-Computing Volume 13 Issue 1 January 2015
  9. Hartigan J.A, . ”Direct clustering of a data matrix”. Journal of the American Statistical Association. 67 (337): 1239. 1972
  10. Skillicorn, D.B.,Leuprecht, C., ”Clustering Heterogeneous Semi-Structured Social Science Datasets”, Procedia Computer Science Volume 51, 2015, Pages 29082912
  11. Huang, Z., ”Extensions to the k-Means Algorithm for Clustering Large Data Sets with Categorical Values”, Data Mining and Knowledge Discovery 2, 283304 (1998)
  12. Huang, Z., ”Clustering large data sets with mixed numeric and categorical values”, Proceedings of the First Pacific Asia Knowledge Discovery and Data Mining Conference, Singapore, pp. 21-34, 1997
  13. Gedeon, T.D., ”Data mining of inputs: analysing magnitude and functional measures”, International Journal Of Neural System 1997 Apr;8(2), 209-218
  14. Zhao, M., Saligrama, V., ”Anomaly Detection with Score functions based on Nearest Neighbor Graphs”, Advances in Neural Information Processing Systems 22 (NIPS 2009)
  15. Gao, J., Tan, P.N., ”Converting Output Scores from Outlier Detection Algorithms into Probability Estimates”, Proceedings of the 6th IEEE International Conference on Data Mining (ICDM 2006), 18-22 December 2006, Hong Kong, China
  16. Rumelhart, D.E., Hinton G.E., and Williams, R.J. ”Learning internal representations by error propagation”. In Parallel Distributed Processing. Vol 1,Foundations. MIT Press, Cambridge, MA, 1986
  17. Hinton, G.E., Salakhutdinov, R.R., ”Reducing the Dimensionality of Data with Neural Networks”,Science 28 Jul 2006,Vol. 313, Issue 5786, pp. 504-507
  18. Hinton G.E., Krizhevsky A., Wang S.D. (2011) Transforming Auto-Encoders. In: Honkela T., Duch W., Girolami M., Kaski S. (eds) Artificial Neural Networks and Machine Learning ICANN 2011. ICANN 2011. Lecture Notes in Computer Science, vol 6791. Springer, Berlin, Heidelberg
  19. Oh, D.Y., Yun, D.,”Residual Error Based Anomaly Detection Using Auto-Encoder in SMD Machine Sound”,Sensors (Basel) 2018 May; 18(5): 1308. Published online 2018 Apr 24.
  20. K. Han, Y. Wang, C. Zhang, C. Li and C. Xu, ”Autoencoder Inspired Unsupervised Feature Selection,” 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Calgary, AB, 2018, pp. 2941-2945.
Index Terms

Computer Science
Information Sciences

Keywords

Terrorism Unsupervised Learning Clustering Autoencoders Optimization