CFP last date
20 December 2024
Reseach Article

Application of Naïve Bayes Algorithm for Measuring the Suitability of the Work Position in Ministry of Home Affairs

by Penny Dwi Harnaning, Muhammad Subali, Karmilasari
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 176 - Number 26
Year of Publication: 2020
Authors: Penny Dwi Harnaning, Muhammad Subali, Karmilasari
10.5120/ijca2020920236

Penny Dwi Harnaning, Muhammad Subali, Karmilasari . Application of Naïve Bayes Algorithm for Measuring the Suitability of the Work Position in Ministry of Home Affairs. International Journal of Computer Applications. 176, 26 ( May 2020), 28-34. DOI=10.5120/ijca2020920236

@article{ 10.5120/ijca2020920236,
author = { Penny Dwi Harnaning, Muhammad Subali, Karmilasari },
title = { Application of Naïve Bayes Algorithm for Measuring the Suitability of the Work Position in Ministry of Home Affairs },
journal = { International Journal of Computer Applications },
issue_date = { May 2020 },
volume = { 176 },
number = { 26 },
month = { May },
year = { 2020 },
issn = { 0975-8887 },
pages = { 28-34 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume176/number26/31364-2020920236/ },
doi = { 10.5120/ijca2020920236 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-07T00:43:32.882620+05:30
%A Penny Dwi Harnaning
%A Muhammad Subali
%A Karmilasari
%T Application of Naïve Bayes Algorithm for Measuring the Suitability of the Work Position in Ministry of Home Affairs
%J International Journal of Computer Applications
%@ 0975-8887
%V 176
%N 26
%P 28-34
%D 2020
%I Foundation of Computer Science (FCS), NY, USA
Abstract

The Ministry of Home Affairs a ministry which is under and responsible to the President through the Minister, who has the task of holding affairs in the field of internal government to assist the President in organizing the governmence of the country. In carrying out governmental tasks of domestic government, the Ministry of Home Affairs requires qualified State Civil Apparatuses and their placement must be in accordance with their competencies. Until now there are still problems with the placement of employees in positions that are not in line with their competencies. Data mining in this study was implemented to measure the level of suitability of the employees to the positions they occupy by involving large amounts of data, the technique used for classification is the Naïve Bayes algorithm which is used to determine the extent of suitability between employees and the occupied positions. The attributes used consist of three attributes, namely the level of education, education and training, and rank / classfication. The object of this study are 4202 employee profile data consisting of 305 employees who hold the position of Administrator (III. A), 16 employees who occupy the position of Administrator (III. B), 806 employees who occupy Supervisory positions (IV. A), 82 employees occupying the Supervisory position (IV. B), and 2993 employees who hold the Implementing position. Accuracy of suitability between employees and the position they occupy is based on testing of the results of the classification of the Naïve Bayes algorithm using 90% training data and 10% testing data is 83%.

References
  1. Adinugroho, Sigit dan Yunita Arum Sari. 2018. Implementasi Data Mining Menggunakan Weka. Malang: UB Press.
  2. Awang, Y. Mesak dan Ferdinand R. Anigomang. 2019. Penerapan Metode Analisis Hirarki Proses (AHP) Sistem Penunjang Keputusan (SPK) Penempatan Pegawai Kantor Kecamatan Alor Barat Laut dengan Menggunakan Aplikasi Expertchoice. Seminar Nasional Teknologi Informasi dan Komunikasi STI&K (SeNTIK). ISSN : 2581-2327.
  3. Buulolo, Efori. 2020. Data Mining Untuk Perguruan Tinggi. Yogyakarta: Deepublish.
  4. Dewi, Santika. Esmeralda C. Djamal, dan Rezki Yuniarti. 2017. Optimalisasi Penempatan Guru Sekolah Dasar di Kecamatan Cikajang Kabupaten Garut Menggunakan Algoritma Genetika. Seminar Nasional Komputer dan Informatika (SENASKI). ISBN: 978-602-60250-1-2.
  5. Fitriaty dan Ninik Vurwanti. 2015. Analisis Penempatan Pegawai pada Badan Kepegawaian Pendidikan dan Pelatihan Daerah di Kabupaten Sarolangun Tahun 2013 – 2015. eJournal Pemerintahan Integratif. ISSN 2337-8670.
  6. Karnoto, Edi. 2018. “Penerapan Data Mining Untuk Memprediksi Tingkat Kesesuaian Penempatan Pegawai Terhadap Jabatan Yang Diduduki pada Badan Penyelenggara Pengelolaan Kepegawaian Menggunakan Metode Decision Tree dengan Algoritma C4.5”. Magister Sistem Informasi. Universitas Gunadarma. Jakarta.
  7. Muflikhah, Laili. Dian Eka Ratnawati, dan Rekyan Regasari Mardi Putri. 2018. Data Mining. Malang: UB Press.
  8. Pramana, Setia dkk. 2018. Data Mining dengan R, Konsep Serta Implementasi. Bogor: In Media.
  9. Perpres RI No. 11. (2015). Peraturan Presiden Republik Indonesia Nomor 11 Tahun 2015 tentang Kementerian Dalam Negeri.
  10. Pramudhita, N. Agung. Hadi Suyono, dan Erni Yudaningtyas. Penggunaan Algoritma Multi Criteria Decision Making dengan Metode Topsis dalam Penempatan Karyawan.
  11. P. R. N. 1., 2017. Peraturan Pemerintah Republik Indonesia Nomor 11 Tahun 2017 Tentang Manajemen Pegawai Negeri Sipil. Jakarta: s.n.
  12. Silaban, Maryati Sri dan Arief Rifa’i H. 2017. Analisis Kesesuaian Penempatan Pegawai pada Dinas Kependudukan dan Pencatatan Sipil Kota Pekanbaru. PUBLIKa. Vol 3, No. 1 Hal. 135-153.
  13. Sutrisno, Edy. 2017. Manajemen Sumber Daya Manusia. Jakarta: Kencana.
  14. U. R. N. 5., 2014. Undang-Undang Republik Indonesia Nomor 5 Tahun 2014 Tentang Aparatur Sipil Negara. Jakarta: s.n.
  15. Warsito, Setyaning Windry. 2018. Implementasi Analisis Jabatan dalam Penempatan Pegawai di Bagian Kepegawaian Sekretariat DPRD Kabupaten Bandung. LPPM STIE Muhammadiyah Bandung. E-ISSN: 2621-5306 P-ISSN: 2541-5255.
Index Terms

Computer Science
Information Sciences

Keywords

Data Mining Naïve Bayes Algorithm Ministry of Home Affairs Employee Placement.