CFP last date
20 December 2024
Reseach Article

Implementation of FP-Growth Algorithm in Determining Food Package Recommendation in Sunan Giri Ribs Meatball Restaurant

by Vera Munfarijah, D. Lucia Crispina Pardede
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 176 - Number 24
Year of Publication: 2020
Authors: Vera Munfarijah, D. Lucia Crispina Pardede
10.5120/ijca2020920225

Vera Munfarijah, D. Lucia Crispina Pardede . Implementation of FP-Growth Algorithm in Determining Food Package Recommendation in Sunan Giri Ribs Meatball Restaurant. International Journal of Computer Applications. 176, 24 ( May 2020), 15-20. DOI=10.5120/ijca2020920225

@article{ 10.5120/ijca2020920225,
author = { Vera Munfarijah, D. Lucia Crispina Pardede },
title = { Implementation of FP-Growth Algorithm in Determining Food Package Recommendation in Sunan Giri Ribs Meatball Restaurant },
journal = { International Journal of Computer Applications },
issue_date = { May 2020 },
volume = { 176 },
number = { 24 },
month = { May },
year = { 2020 },
issn = { 0975-8887 },
pages = { 15-20 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume176/number24/31346-2020920225/ },
doi = { 10.5120/ijca2020920225 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-07T00:43:23.177285+05:30
%A Vera Munfarijah
%A D. Lucia Crispina Pardede
%T Implementation of FP-Growth Algorithm in Determining Food Package Recommendation in Sunan Giri Ribs Meatball Restaurant
%J International Journal of Computer Applications
%@ 0975-8887
%V 176
%N 24
%P 15-20
%D 2020
%I Foundation of Computer Science (FCS), NY, USA
Abstract

Recommendation packages or menu packs are found in many restaurants or dining houses in order to help the restaurant manager in both developing and promoting menu innovations. Using sales transaction data, process of data mining is assisted by FP-Growth algorithm in which also called a market basket analysis. This analysis has the capability to perform customers shopping pattern by finding associations between several different items bought. The FP-Growth algorithm has three stages in processing the analysis, i.e. Conditional Pattern, Conditional FP-Tree and Frequent Item Set. In this study, the FP-Growth algorithm established an association in customers shopping pattern of Sunan Giri Ribs Meatballs Restaurant by using a minimum support value of 0.2 and the highest minimum confidence as a parameter for the FP-Growth algorithm to produce recommendation packages. This research article gives technical explanation in the utillisation of FP-Growth algorithm in executing the analysis and providing recommendation packages. In line to the e-search findings, it is proved that FP-Growth algorithm is capable to be considered as a tool in making a new innovation.

References
  1. Adinugroho, S. and Sari, Y. A. (2018). Implementasi Data Mining menggunakan Weka. Malang: UB Press.
  2. Astrina, I., Arifin, M. Z., and Pujianto, U. (2019). Penerapan Algoritma FP-Growth dalam Penentuan Pola Pembelian Konsumen Pada Kain Tenun Medali Mas. Jurnal Matrix, 9(1).
  3. Fayyad, Usama; Piatetsky-Shapiro, Gregory; Smyth, Padhraic (1996). "From Data Mining to Knowledge Discovery in Databases" (PDF). Retrieved 17 December 2008.
  4. Huda, M. 2006. Algoritma Data Mining: Analisis Data Dengan Komputer. Bisakimia.
  5. Kusrini (2007). Strategi Perancangan Dan Pengelolaan Basis Data.Yogyakarta : Penerbit Andi
  6. Larose Daniel T (2005). Discovering knowledge in data : an introduction to data mining.Canada : Wiley Inter science
  7. Mayilvaganan, M. and Kalpanadevi, D. (2018). Comparison of Apriori, FP-Tree Growth and Fuzzy FP-Tree Growth Algorithm for Generating Association Rule Mining of Cognitive Skill. Engineering Research and General Science, 6(2). 2091-2730.
  8. Mei, Rizki. 2010, Perbandingan Algoritma Apriori dan Algoritma Fp-Growth Untuk Perekomendasi Pada Transaksi Peminjaman Buku di Perpustakaan Universitas Dian Nuswantoro. Skripsi, Prodi Teknik Informatika : Universitas Dian Nuswantoro Semarang.
  9. Muflikhah, L, Ratnawari, D, E, and Rekyan, R.2018.Data Mining. Universitas Brawijaya Press
  10. Susanto, Sani and Dedy Suryadi. 2010. Pengantar data mining menggali pengetahuan dari bongkahan data. Yogyakarta: Andi Offset.
  11. Vulandari, R. T. (2017). Data Mining Teori dan Aplikasi Rapidminer. Yogyakarta: Gava Media.
Index Terms

Computer Science
Information Sciences

Keywords

FP-Growth Algorithm Association Rule Recommendation.