We apologize for a recent technical issue with our email system, which temporarily affected account activations. Accounts have now been activated. Authors may proceed with paper submissions. PhDFocusTM
CFP last date
20 December 2024
Reseach Article

Metaheuristics for Optimization Analysis on Urban Public Transport

by Mariana Brito Batista, Warley Gramacho Da Silva
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 176 - Number 17
Year of Publication: 2020
Authors: Mariana Brito Batista, Warley Gramacho Da Silva
10.5120/ijca2020920124

Mariana Brito Batista, Warley Gramacho Da Silva . Metaheuristics for Optimization Analysis on Urban Public Transport. International Journal of Computer Applications. 176, 17 ( Apr 2020), 1-6. DOI=10.5120/ijca2020920124

@article{ 10.5120/ijca2020920124,
author = { Mariana Brito Batista, Warley Gramacho Da Silva },
title = { Metaheuristics for Optimization Analysis on Urban Public Transport },
journal = { International Journal of Computer Applications },
issue_date = { Apr 2020 },
volume = { 176 },
number = { 17 },
month = { Apr },
year = { 2020 },
issn = { 0975-8887 },
pages = { 1-6 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume176/number17/31290-2020920124/ },
doi = { 10.5120/ijca2020920124 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-07T00:42:45.596961+05:30
%A Mariana Brito Batista
%A Warley Gramacho Da Silva
%T Metaheuristics for Optimization Analysis on Urban Public Transport
%J International Journal of Computer Applications
%@ 0975-8887
%V 176
%N 17
%P 1-6
%D 2020
%I Foundation of Computer Science (FCS), NY, USA
Abstract

Palmas in the state of Tocantins is the youngest capital of Brazil and the one with the highest growth rate between 2013 and 2014 according to the Brazilian Institute of Geography and Statistics (IBGE). Presently, more than 85% of individuals live in urban centers and often need to use services related to public policies, including urban public transport. To meet this demand, the city has a company that manages and provides this service. That, however, has regularly been increasing the usage fee. These essential expenditures for the performance of services if optimized could be lower without affecting the availability and effectiveness of urban public transport. Therefore we propose the use of optimization through metaheuristics, which are algorithms that work with a certain level of randomness that throughout the process seek to find a better possible solution. Thus, this work will analyze how this problem behaves in metaheuristics applying in the scenario of Palmas, Tocantins - Brazil and discuss the optimal results expected by the algorithm, as well as identify the optimization ranges in which the metaheuristic will fit at the end of its processing.

References
  1. Cssio Roberto Arajo, Elva Oliveira Couto, and Ricarlo Martins Reis. Problema de programao de veculos. 2002.
  2. E. Biondi and P.C. Palermo. A heuristic approach to combinatorial optimization problems. 1973.
  3. Lawrence Bodin and Bruce L. Golden. Classification in vehicle routing and scheduling. 1981.
  4. Bruno Andr Blume. Mobilidade urbana. https://www.politize.com.br/ mobilidade-urbana-transito-problemas/, 2016.
  5. G. Clarke and J. W. Wright. Scheduling of vehicles from a central depot to a number of delivery points. August 1962.
  6. Richard Congram, Chris Potts, and Steef Van De Velde. An iterated dynasearch algorithm for the single-machine total weighted tardiness scheduling problem. INFORMS Journal on Computing, 14:52–67, 02 2002.
  7. ct. Por alta de insumos, reajuste de funcionrios e novos nibus, seturb pediu r$ 4, 2019.
  8. G. B. Dantzig and J. H. Ramser. The truck dispatching problem. pages 80–91, October 1959.
  9. Prefeitura de Cricima. Estudo dos custos do sistema de transporte pblico de passageiros de cricima, 2020.
  10. Deniz Tursel Eliiyi, Arslan Ornek, and Sadk Serhat Karakutu k b. A vehicle scheduling problem with fixed trips and time limitations. pages 150–161, 2008.
  11. Bogdan Filipic and Darko Zupanic. An Evolutionary Algorithm for a Non-standard Scheduling Problem. Artificial Neural Nets and Genetic Algorithms, 1998.
  12. B. A. FOSTER and D. M. RYAN. An integer programming approach to the vehicle scheduling problem. 1976.
  13. G1. A cada 1 hora, 5 pessoas morrem em acidentes de trnsito no brasil, diz conselho federal de medicina, 2019.
  14. G1 Tocantins. Nova tarifa de nibus comea a ser discutida; propostas vo de r4; 09ar 4,26. https://g1. globo.com/to/tocantins/noticia/2020/03/04/ nova-tarifa-de-onibus-comeca-a-ser-discutida-propostas-ghtml, 2010.
  15. Antnio Gaspar-Cunha, Ricardo Takahashi, and Carlos Henggeler Antunes. Manual de computao evolutiva e metaheurstica. Universidade de Coimbra, first edition, 2012.
  16. IBGE - Instituto Brasileiro de Geografia e Estatstica. Palmas. https://cidades.ibge.gov.br/brasil/to/palmas/ historico, 2014.
  17. IBGE - Instituto Brasileiro de Geografia e Estatstica. Frota de veculos. https://cidades.ibge.gov.br/brasil/to/ palmas/pesquisa/22/28120, 2018.
  18. S. M. Johnson. Optimal two -and three-stage production schedules with setup time included. 1953.
  19. Helena Loureno, Olivier Martin, and Thomas St¨utzle. A beginner’s introduction to iterated local search. pages 1–11, 06 2001.
  20. Helena Loureno and Michiel Zwijnenburg. Combining the Large-Step Optimization with Tabu-Search: Application to The Job-Shop Scheduling Problem, pages 219–236. 01 1996.
  21. Vincius Veloso de Melo. Tcnicas de aumento de eficilncia para metaheursticas aplicadas a otimizao global contnua e discreta. PhD thesis, Instituto de Cilncias Matemticas e de Computao, Universidade de So Paulo, So Carlos, 12 2009.
  22. H. Muller-Merbach. Combination programming:methods and applications. pages 19–43, 1974.
  23. Ibrahim Osman and Gilbert Laporte. Metaheuristics: A bibliography. Annals of Operational Research, 63:513–628, 10 1996.
  24. Procon. Pesquisa preo combustvel - palmas, 2020.
  25. Melvin E. SALVESON. On a quantitative method in production planning and scheduling. 1952.
  26. Seturb. Quantos km rodamos por mls?, 2019.
  27. Bingqiang Situ and Wenzhou Jin. Study on the vehicle scheduling problem in transportation system. 2009.
  28. Gleidson Fonseca Soares, Gustavo Peixoto Silva, Euler Horta Marinho, Emiliana Lopes Simes, and Marcone Jamilson Freitas Souza. Otimizao no sistema de transporte pblico. 2006.
  29. Maria Teresinha Arns Steiner, Luzia Vidal S. Zamboni, Deise M. Bertholdi Costa, Celso Carnieri, and Arinei Lindbeck da Silva. O problema de roteamento no transporte escolar. 2000.
  30. Thomas St¨utzle. Local search algorithms for combinatorial problems - analysis, improvements, and new applications. In DISKI, 1999.
  31. TV Anhanguera. Palmas registra 30 mortes por acidentes de trnsito entre janeiro e agosto desse ano, 2019.
  32. Ya Yang, Stephan Kreipl, and Michael Pinedo. Heuristics for minimizing total weighted tardiness in flexible flow shops. Journal of Scheduling, 3(2):89–108, 2000.
Index Terms

Computer Science
Information Sciences

Keywords

Metaheuristic Optimization Vehicle Scheduling Problem bus Iterated Local Search