CFP last date
20 February 2025
Reseach Article

Simultaneous Weak Singularity and Strong Curvature Singularity in Tolman-Bondi Model with k(r) = 0

by A.H. Hasmani, Bina R. Patel
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 176 - Number 15
Year of Publication: 2020
Authors: A.H. Hasmani, Bina R. Patel
10.5120/ijca2020920082

A.H. Hasmani, Bina R. Patel . Simultaneous Weak Singularity and Strong Curvature Singularity in Tolman-Bondi Model with k(r) = 0. International Journal of Computer Applications. 176, 15 ( Apr 2020), 7-9. DOI=10.5120/ijca2020920082

@article{ 10.5120/ijca2020920082,
author = { A.H. Hasmani, Bina R. Patel },
title = { Simultaneous Weak Singularity and Strong Curvature Singularity in Tolman-Bondi Model with k(r) = 0 },
journal = { International Journal of Computer Applications },
issue_date = { Apr 2020 },
volume = { 176 },
number = { 15 },
month = { Apr },
year = { 2020 },
issn = { 0975-8887 },
pages = { 7-9 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume176/number15/31275-2020920082/ },
doi = { 10.5120/ijca2020920082 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-07T00:42:35.809939+05:30
%A A.H. Hasmani
%A Bina R. Patel
%T Simultaneous Weak Singularity and Strong Curvature Singularity in Tolman-Bondi Model with k(r) = 0
%J International Journal of Computer Applications
%@ 0975-8887
%V 176
%N 15
%P 7-9
%D 2020
%I Foundation of Computer Science (FCS), NY, USA
Abstract

The study of continues type of shell-crossing singularity and strong shell-focusing singularity in dust collapse in absence of cosmological constant. We find that for change of the scaling function singularity can change, physically initial data can lead to weak singularity. Although the free rescaling choice is simplest method for proving simultaneous singularity and being purely mathematical analysis.

References
  1. Oppenheimer, J. and Snyder, H. 1939. On continued gravitational contraction. Phys. Rev. Vol. 56, No. 5, pp. 455–459 .
  2. Lemos, J. 1992. Naked singularities: Gravitationally collapsing configurations of dust or radiation in spherical symmetry, a unified treatment. Phys. Rev. Lett. Vol. 68, No. 10, pp. 1447–1450.
  3. Szekeres, P. and Lun, A. 1999.What is a shell-crossing singularity?. Lun, J. Austral. Math. Soc. Ser. B. Vol. 41 No. 2, pp. 167–179.
  4. Meszaros, A. 1991. On shell-crossing in the Tolman metric. Mon. Not. R. Astr. Soc., Vol. 253, No. 4, pp. 619–624.
  5. Hellaby, C. and Lake, K. 1985. Erratum the redshift structure of the Big-Bang in inhomogeneous cosmological models-part one-spherical dust solutions. Astrophys. J. Vol. 294, pp. 702.
  6. Lake, K. 1992. Precursory singularities in spherical gravitational collapse. Phys. Rev. Lett. Vol. 68, No. 21, pp. 3129–3133
  7. Szekeres, P. 1975. Quasispherical gravitational collapse. Physical Review D. Vol. 12, No. 10, pp. 2941–2948.
  8. Hellaby, C. and Lake, K. 1985. Shell crossings and the Tolman model. Astrophys. J. Vol. 290, pp. 381– 387.
  9. Bondi, H. 1947.Spberically symmetric cosmological models in General Relativity. Mon. Nor. R. Astron. Soc., Vol. 107.
  10. Amos, O. 1991. Inevitability of shell crossing in the gravitational collapse of weakly charged dust spheres. Phys. Rev. D. Vol. 44, No. 8, pp. 2278–2285.
  11. Joshi, P. and Dwivedi, I. 1993. Naked singularities in spherically symmetric inhomogeneous Tolman-Bondi dust cloud collapse. Phys. Rev. D. Vol. 47 No. 12, pp. 5357–5369.
  12. Joshi, P. S. 2007. Gravitational collapse and spacetime singularities. Cambridge University Press, Cambridge.
  13. Pankaj, S. 1993. Global aspects in gravitational and cosmology. Int. Ser. Monogr. Phys.
  14. Joshi, P. S. and Saraykar, V. 2013. Shell-crossing in gravitational collapse, Int. Jour. of Mod. Phy., Vol. 22, No. 5, pp. 1350027-1 to 1350027-10.
Index Terms

Computer Science
Information Sciences

Keywords

Shell-crossing Shell-focusing