International Journal of Computer Applications |
Foundation of Computer Science (FCS), NY, USA |
Volume 175 - Number 39 |
Year of Publication: 2020 |
Authors: Abdul-wadud Alhasan, Sonjie Wei |
10.5120/ijca2020920961 |
Abdul-wadud Alhasan, Sonjie Wei . Predicting DDoS Anomaly Patterns in SDN Controller using Hidden Markov Model. International Journal of Computer Applications. 175, 39 ( Dec 2020), 33-41. DOI=10.5120/ijca2020920961
The introduction of Software Defined Networking (SDN) as a panacea to the global demand for a more secure and highly dependable internet infrastructure has also brought along security issues. The adoption of OpenFlow Protocol (OFP) by SDN as the way of communication between controllers and switches, has not only brought about easy and direct manipulation of data for enhanced packet forwarding policies, but also renders the network vulnerable to security issues (DDoS attacks) since the OpenFlow (OF) switch has to ask the controller to install new rules for any new incoming packet. In this work, the capability of SDN in handling security threats that arise from the above vulnerability is proven. This work seeks to design and implement a DDoS detection model that uses Hidden Markov Model (HMM) for detecting abnormal traffic (OpenFlow flooding attacks) directed towards the SDN controller aimed at destabilizing the flow of normal network traffic among users in a software-defined networking environment. The experiment achieved an accuracy of 94.3% in classifying network traffic with 5.7% false positive rate. The feasibility of this approach is proven by building a test scenario to simulate the approach with POX controller and OpenFlow switches.