CFP last date
20 January 2025
Reseach Article

Financial Portfolio Optimization using Monte Carlo and Operation Research

by Noureen M. Noaman, Mohamed A. El-dosuky, Abdelrahman Karawia
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 175 - Number 34
Year of Publication: 2020
Authors: Noureen M. Noaman, Mohamed A. El-dosuky, Abdelrahman Karawia
10.5120/ijca2020920896

Noureen M. Noaman, Mohamed A. El-dosuky, Abdelrahman Karawia . Financial Portfolio Optimization using Monte Carlo and Operation Research. International Journal of Computer Applications. 175, 34 ( Dec 2020), 43-46. DOI=10.5120/ijca2020920896

@article{ 10.5120/ijca2020920896,
author = { Noureen M. Noaman, Mohamed A. El-dosuky, Abdelrahman Karawia },
title = { Financial Portfolio Optimization using Monte Carlo and Operation Research },
journal = { International Journal of Computer Applications },
issue_date = { Dec 2020 },
volume = { 175 },
number = { 34 },
month = { Dec },
year = { 2020 },
issn = { 0975-8887 },
pages = { 43-46 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume175/number34/31672-2020920896/ },
doi = { 10.5120/ijca2020920896 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-07T00:40:17.984791+05:30
%A Noureen M. Noaman
%A Mohamed A. El-dosuky
%A Abdelrahman Karawia
%T Financial Portfolio Optimization using Monte Carlo and Operation Research
%J International Journal of Computer Applications
%@ 0975-8887
%V 175
%N 34
%P 43-46
%D 2020
%I Foundation of Computer Science (FCS), NY, USA
Abstract

Financial portfolio optimization is a difficult problem as it deals with many variables. Modern Portfolio Theory (MPT) is used for minimizing risk for a specific expected return. Many approaches are proposed to optimize portfolios. This paper proposes financial portfolio optimization using Monte Carlo and operation research. Results show an effective financial portfolio optimization.

References
  1. KONNO, Hiroshi; WAKI, Hayato; YUUKI, Atsushi. Portfolio optimization under lower partial risk measures. Asia-Pacific Financial Markets, 2002, 9.2: 127-140.‏
  2. Markowitz, Harry. Portfolio Selection. Journal of Finance, March 1952.
  3. Esfahani, Hamed Nasr, Mohammad hossein Sobhiyah, and Vahid Reza Yousefi. Project portfolio selection via harmony search algorithm and modern portfolio theory. Procedia-Social and Behavioral Sciences 2016, 226: 51-58.
  4. SHARPE, William F. The sharpe ratio. Journal of portfolio management, 1994, 21.1: 49-58.‏
  5. PONSICH, Antonin; JAIMES, Antonio Lopez; COELLO, Carlos A. Coello. A survey on multi-objective evolutionary algorithms for the solution of the portfolio optimization problem and other finance and economics applications. IEEE Transactions on Evolutionary Computation, 2012, 17.3: 321-344.‏
  6. ΖΈΝΙΟΣ, Σταύρος Α. (ed.). Financial optimization. Cambridge university press, 1996.‏
  7. DEMIGUEL, Victor, et al. A generalized approach to portfolio optimization: Improving performance by constraining portfolio norms. Management science, 2009, 55.5: 798-812.‏
  8. RICHARDSON, Henry R. A minimum variance result in continuous trading portfolio optimization. Management Science, 1989, 35.9: 1045-1055.‏
  9. BANK, Peter; BAUM, Dietmar. Hedging and portfolio optimization in financial markets with a large trader. Mathematical Finance: An International Journal of Mathematics, Statistics and Financial Economics, 2004, 14.1: 1-18.‏
  10. BJÖRK, Tomas; MURGOCI, Agatha; ZHOU, Xun Yu. Mean–variance portfolio optimization with state‐dependent risk aversion. Mathematical Finance: An International Journal of Mathematics, Statistics and Financial Economics, 2014, 24.1: 1-24.
  11. TRIPPI, Robert R.; PREFACE BY-LEE, Jae K. Artificial intelligence in finance and investing: state-of-the-art technologies for securities selection and portfolio management. McGraw-Hill, Inc., 1995.‏‏
  12. Lin, Chi-Ming, and Mitsuo Gen. An effective decision-based genetic algorithm approach to multi-objective portfolio optimization problem. Applied Mathematical Sciences 2007, no. 5: 201-210.
  13. Dimmock, Stephen G., Neng Wang, and Jinqiang Yang. The endowment model and modern portfolio theory. No. w25559. National Bureau of Economic Research, 2019.
  14. Grasse, Nathan J., Kayla M. Whaley, and Douglas M. Ihrke. Modern portfolio theory and nonprofit arts organizations: Identifying the efficient frontier. Nonprofit and Voluntary Sector Quarterly 2016, 45, no. 4: 825-843.
  15. deLlano-Paz, Fernando, Anxo Calvo-Silvosa, Susana Iglesias Antelo, and Isabel Soares. Energy planning and modern portfolio theory: A review. Renewable and Sustainable Energy Reviews 2017, 77 : 636-651.
  16. Runting, Rebecca K., Hawthorne L. Beyer, Yann Dujardin, Catherine E. Lovelock, Brett A. Bryan, and Jonathan R. Rhodes. Reducing risk in reserve selection using Modern Portfolio Theory: Coastal planning under sea‐level rise. Journal of applied ecology 2018, 55, no. 5 : 2193-2203.
  17. MCLEISH, Don L. Monte Carlo simulation and finance. John Wiley & Sons, 2011.‏
  18. KANT, Elaine; RANDALL, Curt. System and method for financial instrument modeling and using Monte Carlo simulation. U.S. Patent No 6,772,136, 2004.‏
  19. GLASSERMAN, Paul. Monte Carlo methods in financial engineering. Springer Science & Business Media, 2013.‏
  20. . PAPAGEORGIOU, Anargyros; TRAUB, J. F. Beating monte carlo. Risk, 1996, 9.6: 63-65.‏
  21. . CREAL, Drew. A survey of sequential Monte Carlo methods for economics and finance. Econometric reviews, 2012, 31.3: 245-296.‏
  22. DIXON, Matthew; ZUBAIR, Mohammad. Calibration of stochastic volatility models on a multi-core CPU cluster. In: Proceedings of the 6th Workshop on High Performance Computational Finance. 2013. p. 1-7.‏
  23. LOPEZ DE PRADO, Marcos. A Journey Through the Mathematical Underworld of Portfolio Optimization. Available at SSRN 2214771, 2013.‏
  24. VO, Nhi NY, et al. Deep learning for decision making and the optimization of socially responsible investments and portfolio. Decision Support Systems, 2019, 124: 113097.
Index Terms

Computer Science
Information Sciences

Keywords

Financial Portfolio Optimization Monte Carlo