CFP last date
20 January 2025
Reseach Article

Estimation of Population Variance in Simple Random Sampling using Auxiliary Information

by Sumaira Ajmal Khan, Mehwish Nawaz, Kushbkht M. Din
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 175 - Number 33
Year of Publication: 2020
Authors: Sumaira Ajmal Khan, Mehwish Nawaz, Kushbkht M. Din
10.5120/ijca2020920821

Sumaira Ajmal Khan, Mehwish Nawaz, Kushbkht M. Din . Estimation of Population Variance in Simple Random Sampling using Auxiliary Information. International Journal of Computer Applications. 175, 33 ( Nov 2020), 6-10. DOI=10.5120/ijca2020920821

@article{ 10.5120/ijca2020920821,
author = { Sumaira Ajmal Khan, Mehwish Nawaz, Kushbkht M. Din },
title = { Estimation of Population Variance in Simple Random Sampling using Auxiliary Information },
journal = { International Journal of Computer Applications },
issue_date = { Nov 2020 },
volume = { 175 },
number = { 33 },
month = { Nov },
year = { 2020 },
issn = { 0975-8887 },
pages = { 6-10 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume175/number33/31663-2020920821/ },
doi = { 10.5120/ijca2020920821 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-07T00:40:09.655830+05:30
%A Sumaira Ajmal Khan
%A Mehwish Nawaz
%A Kushbkht M. Din
%T Estimation of Population Variance in Simple Random Sampling using Auxiliary Information
%J International Journal of Computer Applications
%@ 0975-8887
%V 175
%N 33
%P 6-10
%D 2020
%I Foundation of Computer Science (FCS), NY, USA
Abstract

In this paper we propose a new estimator for the population variance using auxiliary information in simple random sampling . we derived a bias and mean square error equation of proposed estimator and compare with the bias and MSE of existing estimator and show that proposed estimator is more efficient than the existing estimators suggested by different authors such that Kadilar and Cingi (2005) [6] , Isaki(1983) [5]. We support this theoretical result with the help of a numerical illustration.

References
  1. Ahmed, M.S. and Hossain, M.I. (2000) . Some competitive estimators of finite Population variance Multivariate Auxiliary Information, Information and Management Sciences, Volume 11 (1), 49-54
  2. Arcos , C.A. and Rueda , G.M , variance estimation using auxiliary information an almost unbiased multivariate ratio estimator. Matrika , Vol.45, pp.171-178 , 1997.
  3. Das, A.K, & Tripathi, T.P. (1978). Use of auxiliary information in estimating the finite population variance . Sankhya , 40, 139-148 .
  4. Gupta , S , & Shabbir, J. (2008). Variance estimation in simple random sampling using auxiliary information . Hacettepe Journal of Mathematics and Statistics, 37, 57-67.
  5. Isaki , C.T . (1983) . Variance estimation using auxiliary information . Journal of the American Statistical Association, 78, 117-123.
  6. Kadilar, C , Cingi ,H. (2005) . A new ratio estimator in stratified sampling . Comm. Statist. Theory Meth. 34:1-6.
  7. Kadilar , C , Cingi ,H. (2006a). Improvement in variance estimation using auxiliary information . Hacettepe Journal of Mathematics and Statistics , 35(1) , 111-115 .
  8. Kadilar , C , Cingi ,H. (2006b) . Ratio estimators for population variance in simple and stratified sampling . Applied Mathematics and Computation , 173, 1047-1058
  9. Subramani, J, & Kumarapandiyan , G. (2012a). Estimation of population mean using coefficient of variation and median of an auxiliary variable . International Journal of Probability and Statistics , 1(4) , 111-118 .
  10. Subramani, J, & Kumarapandiyan , G. (2012b) . Variance Estimation using median of an auxiliary variable. International Journal of Probability and Statistics, 1(3) , 36-40.
  11. Subramani, J, & Kumarapandiyan, G. (2013). Estimation of variance using known coefficient of variation and Median of an auxiliary variable. International Journal of Modern Applied Statistical Methods, 1(12) ,58-64.
Index Terms

Computer Science
Information Sciences

Keywords

Variance estimator bias MSE simple random sampling auxiliary information Efficiency