CFP last date
20 January 2025
Reseach Article

Drawbacks of Poor-Quality Ultrasound Images and its Enhancement

by Khan Sumaiya, S.S. Kawathekar
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 175 - Number 32
Year of Publication: 2020
Authors: Khan Sumaiya, S.S. Kawathekar
10.5120/ijca2020920880

Khan Sumaiya, S.S. Kawathekar . Drawbacks of Poor-Quality Ultrasound Images and its Enhancement. International Journal of Computer Applications. 175, 32 ( Nov 2020), 47-55. DOI=10.5120/ijca2020920880

@article{ 10.5120/ijca2020920880,
author = { Khan Sumaiya, S.S. Kawathekar },
title = { Drawbacks of Poor-Quality Ultrasound Images and its Enhancement },
journal = { International Journal of Computer Applications },
issue_date = { Nov 2020 },
volume = { 175 },
number = { 32 },
month = { Nov },
year = { 2020 },
issn = { 0975-8887 },
pages = { 47-55 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume175/number32/31660-2020920880/ },
doi = { 10.5120/ijca2020920880 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-07T00:40:08.088212+05:30
%A Khan Sumaiya
%A S.S. Kawathekar
%T Drawbacks of Poor-Quality Ultrasound Images and its Enhancement
%J International Journal of Computer Applications
%@ 0975-8887
%V 175
%N 32
%P 47-55
%D 2020
%I Foundation of Computer Science (FCS), NY, USA
Abstract

Ultrasound waves are widely used in the field of medical sciences for diagnosis, therapeutic, and interventional use. It is commonly used in the areas of cardiology, urology, general abdominal imaging, obstetrics and gynecology, vascular imaging, and as a guide in surgical procedures. The noninvasive, cost-effective, flexible, and radiation-free properties of ultrasonography have made it popular among healthcare professionals. The ultrasound images are generated through pulsed acoustic waves that are transmitted and received by a transducer in the ultrasound machine. However, the quality of an image is affected when ultrasound signals degrade while propagating through biological tissues. The poor image quality affects the interpretation, thereby, delaying the diagnosis and intervention in the patient. The present article discusses the basics of ultrasonography, highlights various artifacts in an ultrasound image, and reviews some methods for the enhancement of ultrasound images.

References
  1. Contreras Ortiz, S., Chiu, T. and Fox, M. 2012. Ultrasound image enhancement: A review. Biomedical Signal Processing and Control, 7(5), 419-428.
  2. Hangiandreou, N. 2003. AAPM/RSNA Physics Tutorial for Residents: Topics in US. RadioGraphics, 23(4), 1019-1033.
  3. Thoirs, K. 2012. Physical and technical principles of sonography: A practical guide for non-sonographers. Radiographer, 59(4), 124-132.
  4. Chan, V. and Perlas, A. 2010. Basics of Ultrasound Imaging. In Atlas of Ultrasound-Guided Procedures in Interventional Pain Management. Springer Science+Business Media, 13–19.
  5. Bercovich, E. and Javitt, M. 2018. Medical Imaging: From Roentgen to the Digital Revolution, and Beyond. Rambam Maimonides Med J, 9(4), e0034.
  6. Kaproth-Joslin, K., Nicola, R. and Dogra, V. 2015. The History of US: From Bats and Boats to the Bedside and Beyond:RSNA Centennial Article. RadioGraphics, 35(3), 960-970.
  7. Cronan, J. 2006. Ultrasound: Is There a Future in Diagnostic Imaging? J Am Coll Radiol, 3(9), 645-646.
  8. Moreau, J. 2007. Re: “Ultrasound: Is There a Future in Diagnostic Imaging?”. J Am Coll Radiol, 4(1), 78-79.
  9. Shanthanna, H. 2014. Review of essential understanding of ultrasound physics and equipment operation. World J Anesthesiol, 3(1), 12-17.
  10. Cootney, R. 2001. Ultrasound Imaging: Principles and Applications in Rodent Research. ILAR Journal, 42(3), 233-247.
  11. Abu-Zidan, F., Hefny, A. and Corr, P. 2011. Clinical ultrasound physics. J Emerg Trauma Shock, 4(4), 501-503.
  12. Wells, P. 1998. Physics and bioeffects. In Diagnostic Ultrasound, A logical approach. Philadelphia: Lppincott-Raven Publishers, 1–19.
  13. Tole, N. 2005. Basic physics of ultrasonographic imaging. WHO Library Cataloguing-in-Publication Data, 1–95.
  14. Sites, B., Brull, R., Chan, V., Spence, B., Gallagher, J., Beach, M., et al. 2007. Artifacts and pitfall errors associated with ultrasound-guided regional anesthesia. Part I: understanding the basic principles of ultrasound physics and machine operations. Reg Anesth Pain Med, 32(5), 412–418.
  15. Rose, J. and Bair, A. 2006. Fundamentals of ultrasound. In Practical guide to Emergency Ultrasound. PA: Lippincott Williams and Wilkins, 27–41.
  16. Schuler, A. 2008. Image artifacts and pitfalls. In Chest sonography. 2nd ed. New York: Springer, 175–182.
  17. Abuhamad, A. 2014. Basic physical principles of medical ultrasound. In Ultrasound in Obstetrics and Gynecology, 9–29.
  18. Abuhamad, A. 2014. Basic Characteristics of the Ultrasound Equipment. In Ultrasound in Obstetrics and Gynecology, 30–42.
  19. Kossoff, G. 2000. Basic Physics and Imaging Characteristics of Ultrasound. World J Surg, 24(2), 134–142.
  20. Soler López, F., Mayorga Betancour, M. and Cruz Salazar, E. 2013. Application of ultrasound in medicine Part II: the ultrasonic transducer and its associated electronics. Tecciencia, 8(15), 14–26.
  21. Enriquez, J. and Wu, T. 2014. An introduction to ultrasound equipment and knobology. Crit. Care Clin, 30(1), 25–45.
  22. Najafi, T. and Sepehri N. 2008. A novel hand-controller for remote ultrasound imaging. Mechatronics, 18(10), 578–590.
  23. Magud, O., Tuba, E. and Bacanin, N. 2016. An Algorithm for Medical Ultrasound Image Enhancement by Speckle Noise Reduction. Int. J. Signal Process, 1, 146–151.
  24. Carovac, A., Smajlovic, F. and Junuzovic, D. 2011. Application of Ultrasound in Medicine. Acta Inform Med, 19(3), 168–171.
  25. Moorthy, R. 2002. Doppler ultrasound. Med J Armed Forces India, 58(1), 1–2.
  26. Ng, A. and Swanevelder, J. 2011. Resolution in ultrasound imaging. Contin Educ Anaesth Crit Care Pain, 11(5), 186–192.
  27. Ng, A. and Swanevelder, J. 2010. Perioperative monitoring of left ventricular function: what is the role of recent developments in echocardiography? Br J Anaesth, 104, 669–672.
  28. Ng, A. and Swanevelder, J. 2009. Perioperative echocardiography for non-cardiac surgery: what is its role in routine haemodynamic monitoring? Br J Anaesth, 102, 731–734.
  29. Marhofer, P., Harrop-Griffiths, W., Willschke, H. and Kirchmair, L. 2010. Fifteen years of ultrasound in regional anaesthesia: part 2. Recent developments in block techniques. Br J Anaesth, 104, 673–683.
  30. Fiegenbaum, H. 1994. Echocardiography. 5th ed. Philadelphia: Lea &Febiger, 1.
  31. Lieu, D. 2010. Ultrasound Physics and Instrumentation for Pathologists. Arch Pathol Lab Med, 134(10), 1541–1556.
  32. Alasaarela, E. and Koivukangas, J. 1990. Evaluation of Image Quality of Ultrasound Scanners in Medical Diagnostics. J Ultrasound Med, 9, 23–34.
  33. Arturo, F. and López, S. 2013. Ultrasound applications to medicine part 1: physical principles. Tecciencia, 7(14), 77–89.
  34. Kremkau, F. and Taylor, K. 1986. Artifacts in ultrasound imaging. J Ultrasound Med, 5, 227–237.
  35. Sites, B., Brull, R., Chan, V., Spence, B., et. al. 2007. Artifacts and pitfall errors associated with ultrasound-guided regional anesthesia. Part II: a pictorial approach to understanding and avoidance. Reg Anesth Pain Med, 32, 419–433.
  36. Thickman, D., Ziskin, M., Goldenberg, N. and Linder, B. 1983. Clinical manifestations of the comet tail artifact. J Ultrasound Med, 2, 225–230.
  37. Feldman, M., Katyal, S. and Blackwood, M. 2009. US artifacts. Radiographics, 29(4), 1179–1189.
  38. Gray, A. and Schafhalter-Zoppoth, I. 2005. “Bayonet artifact” during ultrasound-guided transarterial axillary block. Anesthesiology, 102, 1291–1292.
  39. Ploquin, M., Basarab, A. and Kouamé, D. 2015. Resolution enhancement in medical ultrasound imaging. J Med Imaging (Bellingham), 2(1), 017001.
  40. Tortoli, P. and Jensen, J. 2006. Introduction to the Special Issue on Novel Equipment for Ultrasound Research. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 53(10), 1705–1706.
  41. Clement, G., Huttunen, J. and Hynynen, K. 2005. Superresolution ultrasound imaging using back-projected reconstruction. J Acoust Soc Am, 118(6), 3953–3960.
  42. Foster, F., Pavlin, C., Harasiewicz, K., Christopher, D. and Turnbull, D. 2000. Advances in ultrasound biomicroscopy. Ultrasound Med Biol, 26(1), 1–27.
  43. Blomgren, P., Papanicolaou, G. and Zhao, H. 2002. Super-resolution in time-reversal acoustics. J Acoust Soc Am, 111(1 Pt 1), 230–248.
  44. Jirík, R. and Taxt, T. 2006. High-resolution ultrasonic imaging using fast two-dimensional homomorphic filtering. IEEE Trans UltrasonFerroelectr Freq Control, 53(8), 1440–1448.
  45. van Sloun, R., Cohen, R. and Eldar, Y. 2020. Deep Learning in Ultrasound Imaging. Proceedings of the IEEE, 108(1), 11–29.
  46. Clement, G., Huttunen, J. and Hynynen, K. 2005. Superresolution ultrasound imaging using back-projected reconstruction. J Acoust Soc Am, 118(6), 3953–3960.
  47. Jespersen, S., Wilhjelm, J. and Sillesen, H. 1998. Multi-angle compound imaging. Ultrason Imaging, 20, 81–102.
  48. Weng, L., Tirumalai, A., Lowery, C., et al. 1997. US extended-field-of-view imaging technology. Radiology, 203, 877–880.
  49. Simpson, D., Chien Ting Chin, and Burns, P. 1999. Pulse inversion Doppler: a new method for detecting nonlinear echoes from microbubble contrast agents. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 46(2), 372–382.
  50. Frinking, P., Bouakaz, A., Kirkhorn, J., Ten Cate, F. and de Jong, N. 2000. Ultrasound contrast imaging: current and new potential methods. Ultrasound Med Biol, 26(6), 965–975.
  51. Kollmann, C. 2007. New sonographic techniques for harmonic imaging—Underlying physical principles. European Journal of Radiology, 64(2), 164–172.
  52. Lu, J-Y., Zou, H., and Greenleaf, J. 1994. Biomedical ultrasound beam forming. Ultrasound in Medicine & Biology, 20(5), 403–428.
  53. Jensen, J., Nikolov, S., Gammelmark, K. and Pedersen, M. 2006. Synthetic aperture ultrasound imaging. Ultrasonics, 44 (Suppl 1), e5–15.
  54. Seo, C. and Yen, J. 2008. Sidelobe Suppression in Ultrasound Imaging using Dual Apodization with Cross-correlation. IEEE Trans Ultrason Ferroelectr Freq Control, 55(10), 2198–2210.
  55. Guenther, D. and Walker, W. 2007. Optimal apodization design for medical ultrasound using constrained least squares part II simulation results. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 54(2), 343–358.
  56. Chiao, R. and Hao, X. 2005. Coded excitation for diagnostic ultrasound: a system developer’s perspective. IEEE Trans Ultrason Ferroelectr Freq Control, 52(2), 160–170.
  57. Misaridis, T. and Jensen, J. 2005. Use of modulated excitation signals in medical ultrasound. Part I: basic concepts and expected benefits. IEEE Trans Ultrason, Ferroelect, Freq Contr, 52(2), 177–191.
  58. Misaridis, T. and Jensen, J. 2005. Use of modulated excitation signals in medical ultrasound. Part II: design and performance for medical imaging applications. IEEE Trans Ultrason, Ferroelect, Freq Contr, 52(2), 192–207.
  59. Misaridis, T. and Jensen, J. 2005. Use of modulated excitation signals in medical ultrasound. Part III: high frame rate imaging. IEEE Trans Ultrason, Ferroelect, Freq Contr, 52(2), 208–219.
  60. Chang, J., Kim, H., Lee, J. and Shung, K. 2010. Frequency Compounded Imaging with a High-Frequency Dual Element Transducer. Ultrasonics, 50(0), 453–457.
  61. Dantas, R. and Costa, E. 2007. Ultrasound speckle reduction using modified gabor filters. IEEE Trans Ultrason, Ferroelect, Freq Contr, 54(3), 530–538.
  62. Sanchez, J. and Oelze, M. 2009. An ultrasonic imaging speckle-suppression and contrast-enhancement technique by means of frequency compounding and coded excitation. IEEE Trans Ultrason, Ferroelect, Freq Contr, 56(7), 1327–1339.
  63. Pc, L. and Mj, C. 2002. Strain compounding: a new approach for speckle reduction. IEEE Trans Ultrason Ferroelectr Freq Control, 49(1), 39–46.
  64. Christensen-Jeffries, K., Couture, O., Dayton, P., Eldar, Y., Hynynen, K., Kiessling, F., et al. 2020. Super-resolution Ultrasound Imaging. Ultrasound in Medicine and Biology, 46(4), 865–891.
  65. Couture, O., Hingot, V., Heiles, B., Muleki-Seya, P. and Tanter, M. 2018. Ultrasound Localization Microscopy and Super-Resolution: A State of the Art. IEEE Trans Ultrason Ferroelectr Freq Control, 65(8), 1304–1320.
  66. Desailly, Y., Pierre, J., Couture, O. and Tanter, M. 2015. Resolution limits of ultrafast ultrasound localization microscopy. Phys Med Biol, 60(22), 8723–8740.
Index Terms

Computer Science
Information Sciences

Keywords

Ultrasound imaging Ultrasound artifacts Ultrasound enhancement Ultrasound basics