CFP last date
20 February 2025
Reseach Article

Machine Learning to Estimate the Floating Population in Florianopolis

by Denilton Luiz Darold, Carlos Roberto Da Rolt, Andrea Sabbioni
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 175 - Number 27
Year of Publication: 2020
Authors: Denilton Luiz Darold, Carlos Roberto Da Rolt, Andrea Sabbioni
10.5120/ijca2020920812

Denilton Luiz Darold, Carlos Roberto Da Rolt, Andrea Sabbioni . Machine Learning to Estimate the Floating Population in Florianopolis. International Journal of Computer Applications. 175, 27 ( Oct 2020), 1-6. DOI=10.5120/ijca2020920812

@article{ 10.5120/ijca2020920812,
author = { Denilton Luiz Darold, Carlos Roberto Da Rolt, Andrea Sabbioni },
title = { Machine Learning to Estimate the Floating Population in Florianopolis },
journal = { International Journal of Computer Applications },
issue_date = { Oct 2020 },
volume = { 175 },
number = { 27 },
month = { Oct },
year = { 2020 },
issn = { 0975-8887 },
pages = { 1-6 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume175/number27/31620-2020920812/ },
doi = { 10.5120/ijca2020920812 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-07T00:39:33.800487+05:30
%A Denilton Luiz Darold
%A Carlos Roberto Da Rolt
%A Andrea Sabbioni
%T Machine Learning to Estimate the Floating Population in Florianopolis
%J International Journal of Computer Applications
%@ 0975-8887
%V 175
%N 27
%P 1-6
%D 2020
%I Foundation of Computer Science (FCS), NY, USA
Abstract

Touristic cities experience high fluctuation in their population, especially during the summer season. For many cities and countries, tourism plays a vital role in the economy, generating revenue and creating jobs. However, this so welcome economic boost comes along with an overload on public services, once the population increases dramatically in the high season. Therefore, an accurate method to predict the touristic demand is critical to provide the city administrators the necessary information for proper planning. Moreover, the private sector depends on demand forecasting to invest and maximize its profits. The most used methods currently rely on surveys and traditional indicators like the hotel

References
  1. M. Novelli e J. M. Cheer C. Milano. Overtourism and Tourismphobia: A Journey Through Four Decades of Tourism Development, Planning and Local Concerns. 2019.
  2. Andr´es Camacho Murillo. Methods and measurement techniques in tourism. Turismo y Sociedad, 24(November):211–216, 2018.
  3. Paulo Campanario. Florian´opolis: dinˆamica demogr´afica e projec¸ ˜ao da populac¸ ˜ao por sexo, grupos et´arios, distritos e bairros (1950-2050). Ipuf, 2007.
  4. Rute Eduviges Godinho. Nova metodologia de projec¸ ˜ao da populac¸ ˜ao flutuante. 1:1–13, 2000.
  5. Eliza Gomes, M. A.R. Dantas, Douglas D.J. De Macedo, Carlos De Rolt, Marcelo Luiz Brocardo, and Luca Foschini. Towards an infrastructure to support big data for a smart city project. Proceedings - 25th IEEE International Conference on Enabling Technologies: Infrastructure for Collaborative Enterprises, WETICE 2016, pages 107–112, 2016.
  6. Antonio Guarda. Gest˜ao Urbana : Projec¸ ˜ao da Populac¸ ˜ao Flutuante Gest˜ao Urbana : Projec¸ ˜ao da Populac¸ ˜ao Flutuante. (January 2012), 2015.
  7. M. de la Calle-Vaquero e C. Yubero M. Garc´ia-Hern´andez. Cultural heritage and urban tourism: Historic city centres under pressure, Planning and Local Concerns. 9(8):4–8, 2017.
  8. Brazilian Institute of Geography and Statistics. Cities and States. https://www.ibge.gov.br/ cidades-e-estados/sc/florianopolis.html, 2019. [Online; accessed 28-June-2019].
  9. European Capital of Smart Tourism Secretariat. European capital of smart tourism, Oct 2018.
  10. Pedro Tonon Zuanazzi and Mariana Bartels. Estimativas para a populac¸ ˜ao flutuante do Litoral Norte do RS. page 29, 2016.
  11. Sergio Dalla Valle. Metodologie di integrazione di crowdsensing e big data dal territorio : l ’ esperienza Participact Brazil per smart city. PhD thesis, UNIBO, 2018.
  12. WTTC. Travel and tourism economic impact 2018 world, Oct 2018.
Index Terms

Computer Science
Information Sciences

Keywords

Floating population seasonality tourism measurement machine learning