We apologize for a recent technical issue with our email system, which temporarily affected account activations. Accounts have now been activated. Authors may proceed with paper submissions. PhDFocusTM
CFP last date
20 December 2024
Reseach Article

Fixed Point Theorem With C-Class Functions in Partial Metric Spaces

by Jitender Kumar, Sachin Vashistha
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 175 - Number 22
Year of Publication: 2020
Authors: Jitender Kumar, Sachin Vashistha
10.5120/ijca2020920747

Jitender Kumar, Sachin Vashistha . Fixed Point Theorem With C-Class Functions in Partial Metric Spaces. International Journal of Computer Applications. 175, 22 ( Oct 2020), 1-4. DOI=10.5120/ijca2020920747

@article{ 10.5120/ijca2020920747,
author = { Jitender Kumar, Sachin Vashistha },
title = { Fixed Point Theorem With C-Class Functions in Partial Metric Spaces },
journal = { International Journal of Computer Applications },
issue_date = { Oct 2020 },
volume = { 175 },
number = { 22 },
month = { Oct },
year = { 2020 },
issn = { 0975-8887 },
pages = { 1-4 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume175/number22/31580-2020920747/ },
doi = { 10.5120/ijca2020920747 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-07T00:25:46.861827+05:30
%A Jitender Kumar
%A Sachin Vashistha
%T Fixed Point Theorem With C-Class Functions in Partial Metric Spaces
%J International Journal of Computer Applications
%@ 0975-8887
%V 175
%N 22
%P 1-4
%D 2020
%I Foundation of Computer Science (FCS), NY, USA
Abstract

The aim of this paper is to prove a fixed point theorem using C- class function and , altering distance functions in partial metric spaces.

References
  1. T. Abdeljawad, E. Karapinar and K. Tas: Existence and uniqueness of a common fixed point on partial metric spaces, Appl. Math. Lett, 24 (2011), 1900-1904.
  2. O. Acar and I. Altun: Some generalization of Caristi type fixed point theorem on partial metric spaces, Filomat 26 (4) (2012), 833-837.
  3. O. Acar, I. Altun and S. Romaguera: Caristi’s type mapping in complete partial metric space, Fixed Point Theory (Culj- Napoca), (to appear).
  4. I. Altun and O. Acar: Fixed point theorems for weak contractions in the sense of Berinde on partial metric spaces, Topol. Appl., 159 (2012), 2642-2648.
  5. S. Cobzas: Completeness in quasi-metric spaces and Ekeland Variational Principle, Topol. Appl., 158 (2011), 1073-1084.
  6. M. H. Escardo: Pcf Extended with real numbers, Theor. Comput. Sci., 162 (1996), 79-115.
  7. M. Geraghty: On contractive mappings, Proc. Am. Math. Soc., 40 (1973), 604-608.
  8. R. Heckmann: Approximation of metric spaces by partial metric space, Appl. Categ. Struct., 7 (1999), 71-83.
  9. D. Ilic, V. Pavlovic and V. Rakocevic: Some new extensions of Banach’s contraction principle to partial metric space, Appl. Math. Lett., 24 (2011), 1326-1330.
  10. S. G. Mattews: Partial metric topology, Proc. 8th Summer Conference on General Topology and Applications, Ann. New York Acad. Sci., 728 (1994), 183-197.
  11. S. Romaguera: A Kirk type characterization of completeness for partial metric spaces, Fixed Point Theory and applications. Article ID 493298, (2010).
  12. I. Altun and K. Sadaragani: Generalized Geraghty type mapping on partial metric spaces and fixed Point results, Arab. J. Math. (2013), 247-253.
  13. I. Altun, D. Trkolu and B. E. Rhoades: Fixed points of weakly compatible maps satisfying a general contractive condition of integral type, Fixed Point Theory and Applications, 2007 (2007), article ID 17301, 9 pages.
  14. E. Karapinar and I. M. Erhan: Fixed point theorem for operators on partial metric spaces, Appl. Math. Lett., 24 (2011), 1894-1899.
  15. S. Oltar and O. Valero: Banach’s fixed point theorem for partial metric spaces, Rend. Istit. Math. Univ. Trieste., 36 (2004), 17-26.
  16. O. Valero: On Banach fixed point theorems for partial spaces, Appl. General Topol., 6 (2005), 229-240.
  17. S. Romaguera: Fixed point theorems for generalized contractions on partial metric spaces, Topol. Appl., 218 (2011), 2398-2406.
  18. S Romaguera: Matkowski’s type theorems for generalized contractions on (ordered) partial metric spaces, Appl. General Topol., 12 (2011), 213-220.
  19. D. Dukic, Z. Kadelburg and S. Radenovic: Fixed points of Geraghty type mapping in various generalized metric spaces, Abstract and Applied Analysis, 2011 (2011), article ID 561245, p. 13.
  20. A. H. Ansari, Note on “- contractive type mappings and related fixed point”, The 2nd Regional Conference on Mathematics And Applications, PNU, September 2014, pp. 377- 380.
  21. M.S. Khan, M. Swaleh and S. Sessa, Fixed point theorems by altering distances between the points, Bulletin of the Australian Mathematical Society, 30 (1) (1984), 1-9.
  22. A. S. Saluja, M. S. Khan, P. K. Jhade and B. Fisher: Some fixed point theorems for mapping involving rational type expressions in partial metric spaces, Applied Mathematics ENotes, 15 (2015), 147-161.
Index Terms

Computer Science
Information Sciences

Keywords

Fixed point theorem coincidence point metric space C-class function