CFP last date
20 January 2025
Reseach Article

Fixed Point Theorem With C-Class Functions in Partial Metric Spaces

by Jitender Kumar, Sachin Vashistha
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 175 - Number 22
Year of Publication: 2020
Authors: Jitender Kumar, Sachin Vashistha
10.5120/ijca2020920747

Jitender Kumar, Sachin Vashistha . Fixed Point Theorem With C-Class Functions in Partial Metric Spaces. International Journal of Computer Applications. 175, 22 ( Oct 2020), 1-4. DOI=10.5120/ijca2020920747

@article{ 10.5120/ijca2020920747,
author = { Jitender Kumar, Sachin Vashistha },
title = { Fixed Point Theorem With C-Class Functions in Partial Metric Spaces },
journal = { International Journal of Computer Applications },
issue_date = { Oct 2020 },
volume = { 175 },
number = { 22 },
month = { Oct },
year = { 2020 },
issn = { 0975-8887 },
pages = { 1-4 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume175/number22/31580-2020920747/ },
doi = { 10.5120/ijca2020920747 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-07T00:25:46.861827+05:30
%A Jitender Kumar
%A Sachin Vashistha
%T Fixed Point Theorem With C-Class Functions in Partial Metric Spaces
%J International Journal of Computer Applications
%@ 0975-8887
%V 175
%N 22
%P 1-4
%D 2020
%I Foundation of Computer Science (FCS), NY, USA
Abstract

The aim of this paper is to prove a fixed point theorem using C- class function and , altering distance functions in partial metric spaces.

References
  1. T. Abdeljawad, E. Karapinar and K. Tas: Existence and uniqueness of a common fixed point on partial metric spaces, Appl. Math. Lett, 24 (2011), 1900-1904.
  2. O. Acar and I. Altun: Some generalization of Caristi type fixed point theorem on partial metric spaces, Filomat 26 (4) (2012), 833-837.
  3. O. Acar, I. Altun and S. Romaguera: Caristi’s type mapping in complete partial metric space, Fixed Point Theory (Culj- Napoca), (to appear).
  4. I. Altun and O. Acar: Fixed point theorems for weak contractions in the sense of Berinde on partial metric spaces, Topol. Appl., 159 (2012), 2642-2648.
  5. S. Cobzas: Completeness in quasi-metric spaces and Ekeland Variational Principle, Topol. Appl., 158 (2011), 1073-1084.
  6. M. H. Escardo: Pcf Extended with real numbers, Theor. Comput. Sci., 162 (1996), 79-115.
  7. M. Geraghty: On contractive mappings, Proc. Am. Math. Soc., 40 (1973), 604-608.
  8. R. Heckmann: Approximation of metric spaces by partial metric space, Appl. Categ. Struct., 7 (1999), 71-83.
  9. D. Ilic, V. Pavlovic and V. Rakocevic: Some new extensions of Banach’s contraction principle to partial metric space, Appl. Math. Lett., 24 (2011), 1326-1330.
  10. S. G. Mattews: Partial metric topology, Proc. 8th Summer Conference on General Topology and Applications, Ann. New York Acad. Sci., 728 (1994), 183-197.
  11. S. Romaguera: A Kirk type characterization of completeness for partial metric spaces, Fixed Point Theory and applications. Article ID 493298, (2010).
  12. I. Altun and K. Sadaragani: Generalized Geraghty type mapping on partial metric spaces and fixed Point results, Arab. J. Math. (2013), 247-253.
  13. I. Altun, D. Trkolu and B. E. Rhoades: Fixed points of weakly compatible maps satisfying a general contractive condition of integral type, Fixed Point Theory and Applications, 2007 (2007), article ID 17301, 9 pages.
  14. E. Karapinar and I. M. Erhan: Fixed point theorem for operators on partial metric spaces, Appl. Math. Lett., 24 (2011), 1894-1899.
  15. S. Oltar and O. Valero: Banach’s fixed point theorem for partial metric spaces, Rend. Istit. Math. Univ. Trieste., 36 (2004), 17-26.
  16. O. Valero: On Banach fixed point theorems for partial spaces, Appl. General Topol., 6 (2005), 229-240.
  17. S. Romaguera: Fixed point theorems for generalized contractions on partial metric spaces, Topol. Appl., 218 (2011), 2398-2406.
  18. S Romaguera: Matkowski’s type theorems for generalized contractions on (ordered) partial metric spaces, Appl. General Topol., 12 (2011), 213-220.
  19. D. Dukic, Z. Kadelburg and S. Radenovic: Fixed points of Geraghty type mapping in various generalized metric spaces, Abstract and Applied Analysis, 2011 (2011), article ID 561245, p. 13.
  20. A. H. Ansari, Note on “- contractive type mappings and related fixed point”, The 2nd Regional Conference on Mathematics And Applications, PNU, September 2014, pp. 377- 380.
  21. M.S. Khan, M. Swaleh and S. Sessa, Fixed point theorems by altering distances between the points, Bulletin of the Australian Mathematical Society, 30 (1) (1984), 1-9.
  22. A. S. Saluja, M. S. Khan, P. K. Jhade and B. Fisher: Some fixed point theorems for mapping involving rational type expressions in partial metric spaces, Applied Mathematics ENotes, 15 (2015), 147-161.
Index Terms

Computer Science
Information Sciences

Keywords

Fixed point theorem coincidence point metric space C-class function