CFP last date
20 January 2025
Reseach Article

The impact of scaling on Support Vector Machine in Breast Cancer Diagnosis

by Elsayed Badr, Mustafa Abdulsalam, Hagar Ahmed
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 175 - Number 19
Year of Publication: 2020
Authors: Elsayed Badr, Mustafa Abdulsalam, Hagar Ahmed
10.5120/ijca2020920710

Elsayed Badr, Mustafa Abdulsalam, Hagar Ahmed . The impact of scaling on Support Vector Machine in Breast Cancer Diagnosis. International Journal of Computer Applications. 175, 19 ( Sep 2020), 15-19. DOI=10.5120/ijca2020920710

@article{ 10.5120/ijca2020920710,
author = { Elsayed Badr, Mustafa Abdulsalam, Hagar Ahmed },
title = { The impact of scaling on Support Vector Machine in Breast Cancer Diagnosis },
journal = { International Journal of Computer Applications },
issue_date = { Sep 2020 },
volume = { 175 },
number = { 19 },
month = { Sep },
year = { 2020 },
issn = { 0975-8887 },
pages = { 15-19 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume175/number19/31559-2020920710/ },
doi = { 10.5120/ijca2020920710 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-07T00:25:28.486428+05:30
%A Elsayed Badr
%A Mustafa Abdulsalam
%A Hagar Ahmed
%T The impact of scaling on Support Vector Machine in Breast Cancer Diagnosis
%J International Journal of Computer Applications
%@ 0975-8887
%V 175
%N 19
%P 15-19
%D 2020
%I Foundation of Computer Science (FCS), NY, USA
Abstract

By using support vector machine (SVM) and the grid technique Badr et al. [1] introduced new scaling techniques on the data set Wisconsin from UCI machine learning with a total 569 rows and 33 columns. These scaling techniques overcame the standard normalization techniques. In this paper, three new scaling techniques are proposed by using SVM and the grid technique on the the data set Wisconsin from UCI machine learning with a total 569 rows and 32 columns. These scaling techniques are: (i) de Buchet for p = ( ∞) (ii) Lp-norm for p = (∞) (iii) Entropy . Experimental results show that SVM with new scaling techniques achieves 98.60 % , 98.42 % and 98.42 % accuracy against to the standard normalization by 96.49 %.

References
  1. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A, “Global Cancer Statistics 2018,” GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin, in press.
  2. Tomlin, J. A. 1975. On scaling linear programming problems. Mathematical Programming Studies 4, 146-166. DOI= http://dx.doi.org/10.1007/BFb0120718.
  3. Curtis, A. R. and Reid, J. K. 1972. On the automatic scaling of matrices for Gaussian elimination. IMA Journal of Applied Mathematics 10, 1, 118-124. DOI= http://dx.doi.org/10.1093/imamat/10.1.118
  4. Fulkerson, D. R. and Wolfe, P. 1962. An algorithm for scaling matrices. SIAM Review 4, 2, 142-146. DOI= http://dx.doi.org/10.1137/1004032.
  5. Larsson, T. 1993. On scaling linear programs-Some experimental results. Optimization 27, 4, 335-373. DOI= http://dx.doi.org/10.1080/02331939308843895
  6. Hamming, R. W. 1971. Introduction to Applied Numerical Analysis. McGraw-Hill, New York.
  7. de Buchet, J. 1966. Experiments and statistical data on the solving of large-scale linear programs. In Proceedings of the Fourth International Conference on Operational Research, Hertz, D. A. and Melese, J., Eds. Wiley-Interscience, New York, 3-13.
  8. Elble, J. M. and Sahinidis, N. V. 2012. Scaling linear optimization problems prior to application of the simplex method. Computational Optimization and Applications 52, 2, 345-371. DOI= http://dx.doi.org/10.1007/s10589-011-9420-4
  9. Benichou, M., Gauthier, J. M., Hentges, G., and Ribiere, G. 1977. The efficient solution of large-scale linear programming problems-Some algorithmic techniques and computational results. Mathematical Programming 13, 1, 280-322. DOI= http://dx.doi.org/10.1007/BF01584344
  10. Ploskas, N. and Samaras N. 2013. A Computational Comparison of Scaling Techniques for Linear Optimization Problems on a GPU. Optimization Methods and Software. Paper under review.
  11. Elsayed Badr, Mustafa Abdul Salam, Sultan Almotairi and Hagar Ahmed " From Linear Programming Approach to Metaheuristic Approach: Scaling Techniques" Complexity (submitted)
  12. Triantafyllidis, C. and Samaras, N. “Three nearly scaling-invariant versions of an exterior point algorithm for linear programming”, Optimization. 2014, 64(10), 2163–2181.
  13. Ploskas, N. and Samaras, N. “A computational comparison of scaling techniques for linear optimization problems on a graphical processing unit”, International Journal of Computer Mathematics. 2015, 92(2), 319–336.
  14. E. M. Badr and H. elgendy (2020) "A Hybrid water cycle - particle swarm optimization for solving the fuzzy underground water confined steady flow" Indonesian Journal of Electrical Engineering and Computer Science Vol 19, No1: 2020
  15. Elsayed M. Badr, Mahmoud I. Moussa in Wireless Networks (2019), An upper bound of radio k-coloring problem and its integer linear programming model, First Online: 18 March 2019.
  16. Badr, E.;Aloufi,K.A Robot's Response Acceleration Using the Metric Dimension Problem. Preprints 2019, 2019110194 (doi:10.20944/preprints201911.0194.v1).
  17. E.S. Badr, K. Paparrizos, Baloukas Thanasis and G. Varkas (2006), Some computational results on the efficiency of an exterior point algorithm, in Proc. of the 18th National Conference of Hellenic Operational Research Society (HELORS), 15-17 June, Rio, Greece, pp. 1103-1115
  18. E. S. Badr, K. Paparrizos, N. Samaras, and A. Sifaleras (2005), On the Basis Inverse of the Exterior Point Simplex Algorithm, in Proc. of the 17th National Conference of Hellenic Operational Research Society (HELORS), 16-18 June, Rio, Greece, pp. 677-687.
  19. E.S. Badr, M. Moussa, K. Paparrizos, N. Samaras, and A. Sifaleras, Some computational results on MPI parallel implementation of dense simplex method, World Academy of Science, Engineering and Technology (WASET), 23, 2008,778–781.
  20. E. M. Badr and Sultan Almotiari (2019) " On a Dual Direct Cosine Simplex Type Algorithm and Its Computational Behavior" Mathematical Problems in Engineering Volume 2020, Article ID 7361092, 8 pages. https://doi.org/10.1155/2020/7361092
  21. Chin-Wei Hsu, Chih-Chung Chang and Chih-Jen Lin (2010). A practical guide to support vector classification. Technical Report, National Taiwan University.
  22. Chicco D (December 2017). "Ten quick tips for machine learning in computational biology". BioData Mining. 10 (35): 35. doi:10.1186/s13040-017-0155-3. PMC 5721660. PMID 29234465.
  23. Vapnik, V.N. “The nature of statistical learning theory”, Springer: New York, 1995.
  24. Chang, C.C. and C.J. Lin, LIBSVM: a library for support vector machines. 2001, Software available at http://www.csie.ntu.edu.tw/cjlin/libsvm
  25. Salzberg, S. L., On comparing classifiers: Pitfalls to avoid and a recommended approach. Data Min Knowl Discov 1(3):317–328, 1997.
  26. Elsayed Badr, Mustafa Abdul Salam, Sultan Almotairi and Hagar Ahmed, "From Linear Programming Approach to Metaheuristic Approach: Scaling Techniques" Complexity, Hindawi, Submitted.
  27. E. M. Badr and H. elgendy (2020) "A Hybrid water cycle - particle swarm optimization for solving the fuzzy underground water confined steady flow" Indonesian Journal of Electrical Engineering and Computer Science Vol 19, No1: 2020
  28. Elsayed M. Badr, Mahmoud I. Moussa in Wireless Networks (2019), An upper bound of radio k-coloring problem and its integer linear programming model, First Online: 18 March 2019.
  29. Badr, E.;Aloufi,K.A Robot's Response Acceleration Using the Metric Dimension Problem. Preprints 2019, 2019110194 (doi:10.20944/preprints201911.0194.v1).
  30. E.S. Badr, K. Paparrizos, Baloukas Thanasis and G. Varkas (2006), Some computational results on the efficiency of an exterior point algorithm, in Proc. of the 18th National Conference of Hellenic Operational Research Society (HELORS), 15-17 June, Rio, Greece, pp. 1103-1115
  31. E. S. Badr, K. Paparrizos, N. Samaras, and A. Sifaleras (2005), On the Basis Inverse of the Exterior Point Simplex Algorithm, in Proc. of the 17th National Conference of Hellenic Operational Research Society (HELORS), 16-18 June, Rio, Greece, pp. 677-687.
  32. E.S. Badr, M. Moussa, K. Paparrizos, N. Samaras, and A. Sifaleras, Some computational results on MPI parallel implementation of dense simplex method, World Academy of Science, Engineering and Technology (WASET), 23, 2008,778–781.
  33. E. M. Badr and Sultan Almotiari (2019) " On a Dual Direct Cosine Simplex Type Algorithm and Its Computational Behavior" Mathematical Problems in Engineering Volume 2020, Article ID 7361092, 8 pages. https://doi.org/10.1155/2020/7361092.
  34. EM Badr, MA Salam, M Ali, H Ahmed, Social Media Sentiment Analysis using Machine Learning and Optimization Techniques, International Journal of Computer Applications (0975 – 8887) Volume 178 – No. 41, August 2019.
Index Terms

Computer Science
Information Sciences

Keywords

Machine Learning Breast Cancer Support vector machine scaling techniques.