We apologize for a recent technical issue with our email system, which temporarily affected account activations. Accounts have now been activated. Authors may proceed with paper submissions. PhDFocusTM
CFP last date
20 December 2024
Reseach Article

Coulomb Blockade and Single Electron Charging in DNA Bases

by Deep Kamal Kaur Randhawa
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 174 - Number 6
Year of Publication: 2017
Authors: Deep Kamal Kaur Randhawa
10.5120/ijca2017915458

Deep Kamal Kaur Randhawa . Coulomb Blockade and Single Electron Charging in DNA Bases. International Journal of Computer Applications. 174, 6 ( Sep 2017), 35-39. DOI=10.5120/ijca2017915458

@article{ 10.5120/ijca2017915458,
author = { Deep Kamal Kaur Randhawa },
title = { Coulomb Blockade and Single Electron Charging in DNA Bases },
journal = { International Journal of Computer Applications },
issue_date = { Sep 2017 },
volume = { 174 },
number = { 6 },
month = { Sep },
year = { 2017 },
issn = { 0975-8887 },
pages = { 35-39 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume174/number6/28415-2017915458/ },
doi = { 10.5120/ijca2017915458 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-07T00:21:28.279299+05:30
%A Deep Kamal Kaur Randhawa
%T Coulomb Blockade and Single Electron Charging in DNA Bases
%J International Journal of Computer Applications
%@ 0975-8887
%V 174
%N 6
%P 35-39
%D 2017
%I Foundation of Computer Science (FCS), NY, USA
Abstract

To achieve the Coulomb blockade, three criteria have to be met: Bias voltage shouldn’t exceed the charging energy; Thermal energy kBT (≈0.026eV) must be below the charging energy and the tunneling resistance should be higher than the resistance quantum (h/e2). The DNA base molecules Adenine (A), Cytosine(C), Thymine (T) and Guanine (G) were studied for the above conditions to verify their suitability to use in room temperature single electron devices. Charging energies or junction barriers as {LUMO- µ} and {µ - HOMO} for electron and hole transfer respectively are calculated using HF/STO-3G. The order for charging the bases for electron transport is A (0.65eV) < C (0.87eV) < G (0.95eV) < T (1.11eV) and for hole transport G (11.67eV) < C (11.92eV)

References
  1. Aviram, A., Ratner, M.A. 1974. Molecular rectifiers. Chem. Phys. Lett. 29, 277-283.
  2. Chen, J., Wang, W., Klemic, J., Reed, M.A., Axelrod, B.W., Kaschak, D. M., Rawlett, A. M., Price, D. W., Dirk, S. M., Tour, J. M., Grubisha, D. S., Bennett, D. W. 2002. Molecular Wires, Switches, and Memories Ann. N.Y. Acad. Sci., Molecular Electronics II, 960, 69-99.
  3. James, D.K., Tour, J.M. 2004. Molecular Wires. Encyclopedia of Nanoscience and Nanotechnology Marcel Dekker, 2177-2195.
  4. Robertson, N., MaGowan, C.A. 2003. A comparison of potential molecular wires as components for molecular electronics. Chem. Soc. Rev. 32, 96-103.
  5. Chabinyc, M.L. 2002. Molecular rectification in a metal-insulator-metal junction based on self-assembled monolayers. J. Am. Chem. Soc., 124, 11730-11736.
  6. Veres, J., Ogier, S., Lloyd, G., De leeuw, D. 2004. Gate insulators in organic field-effect transistors. Chem. Mater., 16, 4543-4555.
  7. Ashwell, G.J., Tyrrell, W.D., Whittam, A.J. 2004. Molecular rectification:  self-assembled monolayers in which donor-(π-bridge)-acceptor moieties are centrally located and symmetrically coupled to both gold electrodes. J. Am. Chem. Soc., 126, 7102-7110.
  8. Ben-Jacob, E, Hermon, Z., Caspi, Z. 1998. DNA - Nanoelectronics: Realization of a Single Electron Tunneling Transistor and a Quantum Bit Element arXiv:physics/9808044 v1.
  9. Tsutsui, M. 2010. Identifying single nucleotides by tunnelling current. Nature Nanotechnology 5, 286-290.
  10. Braun, E. et al. 1998. DNA-templated assembly and electrode attachment of a conducting silver wire. Nature 391, 775-778.
  11. Lientschnig, G., Weymann, I., Hadley, P. 2003. Simulating Hybrid Circuits of Single-Electron Transistors and Field-Effect Transistors Jpn. J. Appl. Phys. 42, 6467–6472.
  12. Datta, S. 2005. Atom to transistor. Cambridge University Press, New York.
  13. Olofsson, J., Larsson, S. 2001. Electron Hole Transport in DNA J. Phys. Chem. B, 105, 10398-10406.
Index Terms

Computer Science
Information Sciences

Keywords

Coulomb blockade tunneling resistance energy level diagram molecular electronics DNA bases V-I characteristics.