CFP last date
20 December 2024
Reseach Article

Finding Best Fit for Hand-Drawn Curves using Polynomial Regression

by Bhaumik Choksi, Ajay Venkitaraman, Swati Mali
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 174 - Number 5
Year of Publication: 2017
Authors: Bhaumik Choksi, Ajay Venkitaraman, Swati Mali
10.5120/ijca2017915390

Bhaumik Choksi, Ajay Venkitaraman, Swati Mali . Finding Best Fit for Hand-Drawn Curves using Polynomial Regression. International Journal of Computer Applications. 174, 5 ( Sep 2017), 20-23. DOI=10.5120/ijca2017915390

@article{ 10.5120/ijca2017915390,
author = { Bhaumik Choksi, Ajay Venkitaraman, Swati Mali },
title = { Finding Best Fit for Hand-Drawn Curves using Polynomial Regression },
journal = { International Journal of Computer Applications },
issue_date = { Sep 2017 },
volume = { 174 },
number = { 5 },
month = { Sep },
year = { 2017 },
issn = { 0975-8887 },
pages = { 20-23 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume174/number5/28403-2017915390/ },
doi = { 10.5120/ijca2017915390 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-07T00:21:21.021502+05:30
%A Bhaumik Choksi
%A Ajay Venkitaraman
%A Swati Mali
%T Finding Best Fit for Hand-Drawn Curves using Polynomial Regression
%J International Journal of Computer Applications
%@ 0975-8887
%V 174
%N 5
%P 20-23
%D 2017
%I Foundation of Computer Science (FCS), NY, USA
Abstract

Curve fitting gives the user a mathematical function that best fits to a series of data points while considering the constraints of the data. This paper presents an algorithm to determine the equation of a hand-drawn curve using polynomial regression. The hand-drawn curve may be digitally drawn, or manually drawn on paper and scanned. Polynomial regression is used to estimate the order of the equation that fits the curve and determine the coefficients of the equation.

References
  1. Gupta, Swati. "A Regression Modeling Technique on Data Mining." International Journal of Computer Applications 116.9 (2015).
  2. Seber, George AF, and Alan J. Lee. Linear regression analysis. Vol. 936. John Wiley & Sons, 2012.
  3. Otsu, Nobuyuki. "A threshold selection method from gray-level histograms." IEEE transactions on systems, man, and cybernetics 9.1 (1979): 62-66.
  4. Lancaster, Peter, and Kestutis Salkauskas. Curve and surface fitting: an introduction. Academic press, 1986.
  5. Akima, Hiroshi. "A new method of interpolation and smooth curve fitting based on local procedures." Journal of the ACM (JACM) 17.4 (1970): 589-602.
  6. Montgomery, Douglas C., Elizabeth A. Peck, and G. Geoffrey Vining. Introduction to linear regression analysis. John Wiley & Sons, 2015.
  7. Weisberg, Sanford. Applied linear regression. Vol. 528. John Wiley & Sons, 2005.
  8. Motulsky, Harvey J., and Lennart A. Ransnas. "Fitting curves to data using nonlinear regression: a practical and nonmathematical review." The FASEB journal 1.5 (1987): 365-374.
  9. Bates, Douglas M., and Donald G. Watts. Nonlinear regression analysis and its applications. Vol. 2. New York: Wiley, 1988.
  10. Peckov, Aleksandar. A Machine Learning Approach to Polynomial Regression. Diss. PhD thesis, Jozef Stefan International Postgraduate School, Ljubljana, 2012.
  11. Gallant, A. Ronald, and Wayne A. Fuller. "Fitting segmented polynomial regression models whose join points have to be estimated." Journal of the American Statistical Association 68.341 (1973): 144-147.
Index Terms

Computer Science
Information Sciences

Keywords

Polynomial Regression Regression Curve Fitting.