We apologize for a recent technical issue with our email system, which temporarily affected account activations. Accounts have now been activated. Authors may proceed with paper submissions. PhDFocusTM
CFP last date
20 December 2024
Reseach Article

MoGAR: Morphological Generator for Arabic Language using Rule-based Generation Process

by Ahmed Benfatma, Mohamed Amine Cheragui
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 174 - Number 3
Year of Publication: 2017
Authors: Ahmed Benfatma, Mohamed Amine Cheragui
10.5120/ijca2017915350

Ahmed Benfatma, Mohamed Amine Cheragui . MoGAR: Morphological Generator for Arabic Language using Rule-based Generation Process. International Journal of Computer Applications. 174, 3 ( Sep 2017), 22-28. DOI=10.5120/ijca2017915350

@article{ 10.5120/ijca2017915350,
author = { Ahmed Benfatma, Mohamed Amine Cheragui },
title = { MoGAR: Morphological Generator for Arabic Language using Rule-based Generation Process },
journal = { International Journal of Computer Applications },
issue_date = { Sep 2017 },
volume = { 174 },
number = { 3 },
month = { Sep },
year = { 2017 },
issn = { 0975-8887 },
pages = { 22-28 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume174/number3/28387-2017915350/ },
doi = { 10.5120/ijca2017915350 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-07T00:21:10.891281+05:30
%A Ahmed Benfatma
%A Mohamed Amine Cheragui
%T MoGAR: Morphological Generator for Arabic Language using Rule-based Generation Process
%J International Journal of Computer Applications
%@ 0975-8887
%V 174
%N 3
%P 22-28
%D 2017
%I Foundation of Computer Science (FCS), NY, USA
Abstract

The automatic generation of text (also known as the automatic generation of textual resources) consists in initially producing words and sentences with meaning. Based on parameters generally derived from other phases of processing, such as analyzing the translation process. The aim of our work is to contribute to the development of the Arabic language processing, by proposing a technique of generation of words (verbs and derivable nouns) and sentences based on the use of variables (features). The latter may have morphological traits (gender, number, voice, etc.), or syntactic traits (structure of Arabic sentence), so the originality of this work lies mainly in the identification of the different features which can Influenced on the process of generation but also to find a kind of cohabitation between these traits to lead to a correct generation.

References
  1. Shaalan, K., Abdel Monem, A., Rafea, A., & Baraka, H. 2009. Syntactic Generation of Arabic in Interlingua-based Machine Translation Framework. Third workshop on Computational Approaches to Arabic Script-based Languages (CAASL3). Machine Translation Summit XII. Canada.
  2. Azza, A., Shaalan, K., Rafea, A., and Baraka, H. 2008. Generating Arabic text in multilingual speech-to-speechmachine translation framework, Journal Machine Translation Springer Netherlands, Pages 205-258.
  3. El-Barbary, O. 2016. Using Arabic Skeleton Morphology and Maximum Entropy forArabic Document Classification, British Journal of Mathematics & Computer Science, ISSN: 2231-0851.
  4. Baloul, S. 2003. Développement d’un système automatique de synthèse de la parole à partir du texte arabe standard voyellé, Doctorat thesis, university of Mans, (France).
  5. Boudelaa, S., Pulvermüller, F., Hauk, O., Shtyrov, Y., Marslen-Wilson, W. 2010. Arabic morphology in the neural language system. Journal of Cognitive Neuroscience, 22(5):998-1010.
  6. Soudi, A., Van den Bosch, A., and Neumann, G., 2007. Arabic computational morphology. ISBN978-1-4020-6046-5 (e-book), Published by Springer.
  7. Zemirli, Z., Sellami, M., and Vigourou, N. 1997. Modélisation des règles phonologiques dans un système de génération automatique de la langue arabe, 1iere Journées scientifiques, Avignon (France).
  8. Blachère, R and Gaudefroy-Demombynes, M. 1975. Grammaire de l’arabe classique (morphologie et syntaxe), G.P. Maisonneuve & Larose, Editeurs à Paris, 508 p.
  9. Shaalan, H., Samih, Y., Attia, M., Pecina, P., and Van Genabith, J. 2012. Arabic Word Generation and Modelling for Spell Checking. In Proceedings of the Eight International Conference on Language Resources and Evaluation, pp. 719-725, Istanbul, Turkey.
  10. Beesley, K. 1996. Arabic finite-state morphological analysis and generation. In Proceedings of the 16th International Conference on Computational Linguistics (COLING-96), volume 1, pp. 89–94, Copenhagen, Denmark.
  11. Beesley, K. 2001. Arabic Finite-State Morphological Analysis and Generation of Arabic at XeroxResearch. In Actes de ACL/EACL2001. Toulouse.
  12. Cavalli-Sforza, V., Soudi, A., and Mitamura, T. 2000. Arabic morphology generation using a concatenative strategy. In Proceedings of the 6th Applied Natural Language Processing Conference (ANLP 2000), PP. 86–93, Seattle, Washington, USA.
  13. Habash, N. 2004. Large scale lexeme based Arabic morphological generation. In Proceedings of Traitement Automatique du Langage Naturel (TALN-04). Fez, Morocco.
  14. Shaalan, K., Monein, A., and Rafea, A. 2006. Arabic Morphological Generation From Interlingua (A Rule-Based Approach), International Conference on Intelligent Information Processing (IIP), September 20-23, Adelaide, Australia,.
  15. Habash, N. and Rambow, O. 2006. MAGEAD:A Morphological Analyzer and Generator for the Arabic Dialects, In Proceedings of Coling-ACL.
  16. Habash, N. 2007. Arabic Morphological Representations for Machine Translation, Arabic Computational Morphology, Publisher Springer Netherlands.
Index Terms

Computer Science
Information Sciences

Keywords

Arabic language Morphology generation Root Pattern derivation inflexion.