CFP last date
20 December 2024
Reseach Article

Internet of Things (IoT) for Smart Farming: A Systematic Review

by Safianu Omar
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 174 - Number 27
Year of Publication: 2021
Authors: Safianu Omar
10.5120/ijca2021921182

Safianu Omar . Internet of Things (IoT) for Smart Farming: A Systematic Review. International Journal of Computer Applications. 174, 27 ( Mar 2021), 47-54. DOI=10.5120/ijca2021921182

@article{ 10.5120/ijca2021921182,
author = { Safianu Omar },
title = { Internet of Things (IoT) for Smart Farming: A Systematic Review },
journal = { International Journal of Computer Applications },
issue_date = { Mar 2021 },
volume = { 174 },
number = { 27 },
month = { Mar },
year = { 2021 },
issn = { 0975-8887 },
pages = { 47-54 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume174/number27/31849-2021921182/ },
doi = { 10.5120/ijca2021921182 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-07T00:23:17.517846+05:30
%A Safianu Omar
%T Internet of Things (IoT) for Smart Farming: A Systematic Review
%J International Journal of Computer Applications
%@ 0975-8887
%V 174
%N 27
%P 47-54
%D 2021
%I Foundation of Computer Science (FCS), NY, USA
Abstract

The world population growth is projected to increase in the coming years and it brings along challenges such as food insecurity and increasing demand for food as a result of production challenges. For these reasons, sustainable and innovative agriculture practices are given higher priority. Smart farming is one of the innovative practices which has seen a significant growth as a result of improved technology and it is a novel farm management method that uses technologies to optimize farming activities and increase productivity. Many reviews on application of IoTs for farming have been published which shows significant contributions in this area of research. In existing reviews, the focus is mainly on areas like Unmanned Aerial Vehicles (UAC) and network topologies, technologies and protocols. This work uses the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) methodology to make a systematic review of current state of IoTs for farming by identifying the state-of-the-art sensing, networking, communication and data management technologies commonly used to implement the solution. The work demonstrates the growing importance of IoTs in farm management and reveals a significant improvement in the way sensor data are stored and processed. It also shows a rise in the usage of supporting technologies like cloud computing, artificial intelligence and image processing techniques for storing and processing big data in efficient and less tedious ways.

References
  1. Committee on World Food Security (FAO). 2012. Coming to terms with terminology: Food Security, nutrition security, food security and nutrition, food and nutrition security, October 15-22, 2012, Rome, Italy.
  2. UNDP. 2016. Sustainable Development Goal 2 (SDG 2): Zero Hunger. Accessed on: April 5, 2020. [online]. Available: https://www.undp.org/content/undp/en/home/sustainable-development-goals/goal-2-zero-hunger.html
  3. United Nations Children’s Fund, World Health Organization, The World Bank, “UNICEF-WHO-World Bank Joint Child Malnutrition Estimates”, UNICEF, New York; WHO, Geneva; The World Bank, Washington, DC, 2012.
  4. FAO, IFAD, UNICEF, WFP and WHO., “The State of Food Security and Nutrition in the World 2017. Building resilience for peace and food security”, Rome, FAO, 2017.
  5. SciForce, Smart Farming: The Future of Agriculture. Available online: https://www.iotforall.com/smart-farming-future-of-agriculture. (Accessed on 5 September 2020).
  6. Venkatesan, R., Tamilvanan, A., “A sustainable agricultural system using IoT”, In: International Conference on Communication and Signal Processing (ICCSP), 2017.
  7. Granell, C., Miralles, I., Rodríguez-Pupo, L., González-Pérez, A., Casteleyn, S., Busetto, L., Pepe, M., Boschetti, M., Huerta, J., “Conceptual Architecture and Service-Oriented Implementation of a Regional Geoportal for Rice Monitoring”, ISPRS Int. J. Geo Inf. 2017, 6, 191, doi:10.3390/ijgi6070191.
  8. Uddin, M.A., Mansour, A., Jeune, D.L., Ayaz, M., Aggoune, E., “UAV-Assisted Dynamic Clustering of Wireless Sensor Networks for Crop Health Monitoring”, Sensors, 2018. doi:10.3390/s18020555.
  9. Liu, N.; Cao, W.; Zhu, Y.; Zhang, J.; Pang, F.; Ni, J. “Node Deployment with k-Connectivity in Sensor Networks for Crop Information Full Coverage Monitoring”, Sensors, 2016. doi:10.3390/s16122096.
  10. Alonso, R.S., Sittón-Candanedo, I., García, Ó., Prieto, J., Rodríguez-González, S. “An intelligent Edge-IoT platform for monitoring livestock and crops in a dairy farming scenario”, Ad Hoc Network, 2020. doi:10.1016/j.adhoc.2019.102047.
  11. Trilles, S., González-Pérez, A., Huerta, J. “A Comprehensive IoT Node Proposal Using Open Hardware. A Smart Farming Use Case to Monitor Vineyards”, Electronics, 2018, doi:10.3390/electronics7120419.
  12. Li, S.; Yuan, F.; Ata-UI-Karim, S.T.; Zheng, H.; Cheng, T.; Liu, X.; Tian, Y.; Zhu, Y.; Cao, W.; Cao, Q., “Combining Color Indices and Textures of UAV-Based Digital Imagery for Rice LAI Estimation”, Remote Sens, 2019, 11, 1763, doi:10.3390/rs11151763.
  13. Han, L.; Yang, G.; Yang, H.; Xu, B.; Li, Z.; Yang, X., “Clustering Field-Based Maize Phenotyping of Plant-Height Growth and Canopy Spectral Dynamics Using a UAV Remote-Sensing Approach”, Front. Plant Sci., 2018, 9, 1–18, doi:10.3389/fpls.2018.01638.
  14. Li, S.; Ding, X.; Kuang, Q.; Ata-UI-Karim, S.T.; Cheng, T.; Liu, X.; Tian, Y.; Zhu, Y.; Cao, W.; Cao, Q., “Potential of UAV-Based Active Sensing for Monitoring Rice Leaf Nitrogen Status”, Front. Plant Sci., 2018, 9, 1–14, doi:10.3389/fpls.2018.01834.
  15. Mateo-Aroca, A., García-Mateos, G., Ruiz-Canales, A., Molina-García-Pardo, J.M., Molina-Martínez, J.M., “Remote Image Capture System to Improve Aerial Supervision for Precision Irrigation in Agriculture”, Water 2019, 11, 255, doi:10.3390/w11020255.
  16. Thakur, D., Kumar, Y., Vijendra, S., “Smart Irrigation and Intrusions Detection in Agricultural Fields Using I.o.T” Procedia Comput. Sci., 2020, 167, 154–162, doi: 10.1016/j.procs.2020.03.193.
  17. Taskin, D., Yazar, S., “A Long-range context-aware platform design for rural monitoring with IoT In precision agriculture”, Int. J. Comput. Commun. Control, 2020, 15, 1–11, doi:10.15837/IJCCC.2020.2.3821.
  18. Chen, Y., Chanet, J.-P., Hou, K.-M.; Shi, H., de Sousa, G., “A Scalable Context-Aware Objective Function (SCAOF) of Routing Protocol for Agricultural Low-Power and Lossy Networks (RPAL)”, Sensors 2015, 15, 19507–19540, doi:10.3390/s150819507.
  19. Xing, H., Xu, X., Li, Z., Chen, Y., Feng, H., Yang, G., Chen, Z., “Global sensitivity analysis of the Aqua Crop model for winter wheat under different water treatments based on the extended Fourier amplitude sensitivity test”, J. Integr. Agric., 2017, 16, 2444–2458, doi:10.1016/S2095-3119(16)61626-X.
  20. Vincent, D.R., Deepa, N.; Elavarasan, D.; Srinivasan, K.; Chauhdary, S.H.; Iwendi, C., “Sensors Driven AI-Based Agriculture Recommendation Model for Assessing Land Suitability”, Sensors, 2019, 19, 3667, doi:10.3390/s19173667.
  21. Karim, F., Karim, F., Frihida, A., “Monitoring system using web of things in precision agriculture”, Procedia Comput. Sci., 2017, 110, 402–409, doi:10.1016/j.procs.2017.06.083.
  22. Mohanraj, I., Ashokumar, K., Naren, J., “Field Monitoring and Automation Using IOT in Agriculture Domain”, Procedia Comput. Sci., 2016, 93, 931–939, doi:10.1016/j.procs.2016.07.275.
  23. Revathi, N., Sengottuvelan, P., “Real-Time Irrigation Scheduling Through IoT in Paddy Fields”, Int. J. Innovative Technology and Exploring. Engineering, 2019, 8, 4639–4647, doi:10.35940/ijitee.J1183.0881019.
  24. Campos, N.G.S., Rocha, A.R., Gondim, R., da Silva, T.L.C., Gomes, D.G., “Smart and green: An internet-of-things framework for smart irrigation”, Sensors (Switzerland), 2020, 20, 190, doi:10.3390/s20010190.
  25. Kumar, S., Mishra, S., Khanna, P., “Precision Sugarcane Monitoring Using SVM Classifier”, Procedia Comput. Sci., 2017, 122, 881–887, doi:10.1016/j.procs.2017.11.450.
  26. Pérez-Expósito, J., Fernández-Caramés, T., Fraga-Lamas, P., Castedo, L., “VineSens: An Eco-Smart Decision-Support Viticulture System”, Sensors2017, 17, 465, doi:10.3390/s17030465.
  27. Zhai, Z., Martínez Ortega, J.-F., Lucas Martínez, N., Rodríguez-Molina, J., “A Mission Planning Approach for Precision Farming Systems Based on Multi-Objective Optimization”, Sensors2018, 18, 1795, doi:10.3390/s18061795.
  28. Cao, Q., Miao, Y., Shen, J., Yuan, F., Cheng, S., Cui, Z., “Evaluating Two Crop Circle Active Canopy Sensors for In-Season Diagnosis of Winter Wheat Nitrogen Status”, Agronomy2018, 8, 201, doi:10.3390/agronomy8100201.
  29. Gao, Z., Li, W., Zhu, Y., Tian, Y., Pang, F., Cao, W., Ni, J., “Wireless Channel Propagation Characteristics and Modeling Research in Rice Field Sensor Networks”, Sensors, 2018. doi:10.3390/s18093116.
  30. Jin, X.B., Yang, N.X., Wang, X.Y., Bai, Y.T., Su, T.L., Kong, J.L., “Hybrid deep learning predictor for smart agriculture sensing based on empirical mode decomposition and gated recurrent unit group model”, Sensors (Switzerland), 2020. doi:10.3390/s20051334.
  31. Zhang, T., Zhou, W., Meng, F., Li, Z., “Efficiency Analysis and Improvement of an Intelligent Transportation System for the Application in Greenhouse”, Electronics, 2019. doi:10.3390/electronics8090946.
  32. Junxiang, G., Haiqing, D., “Design of Greenhouse Surveillance System Based on Embedded Web Server Technology”, Procedia Eng., 2011, 23, 374–379, doi:10.1016/j.proeng.2011.11.2516. 100.
  33. Hong, L.S., Sa, Z.S., Yan, J., “Environment Factors Monitoring System Based on CAN bus”, International Journal of Online and Biomedical Engineering., 2016, 12, 9, doi:10.3991/ijoe.v12i05.5722. 101.
  34. Shasi Kiran, U., Arya, S., Rajasekaran, M., “Design and Implementation of Smart and Low Cost Multi-task Farming System Using Arduino”, Int. J. Eng. Technol., 2018, 7, 509, doi:10.14419/ijet.v7i2.24.12148
  35. Abd Rahman, M.K.I., Zainal Abidin, M.S., Buyamin, S., Azimi Mahmud, M.S., “Enhanced Fertigation Control System towards Higher Water Saving Irrigation”, Indonesian. Journal of Electrical. Engineering. Computer. Science, .2018, 10, 859, doi:10.11591/ijeecs.v10.i3.pp859-866. 150.
  36. Muñoz, M., Gil, J.D., Roca, L., Rodríguez, F., Berenguel, M., “An IoT architecture for water resource management in agro industrial environments: A case study in almería (Spain)”, Sensors (Switzerland), 2020, 20, 596, doi:10.3390/s20030596.
  37. Kim, S., Lee, M., Shin, C., “IoT-Based Strawberry Disease Prediction System for Smart Farming”, Sensors, 2018. doi:10.3390/s18114051
  38. Sabri, N., Mohammed, S.S., Fouad, S., Syed, A.A., Al-Dhief, F.T., Raheemah, A., “Investigation of Empirical Wave Propagation Models in Precision Agriculture”, MATEC Web Conf., 2018, 150, 06020, doi:10.1051/matecconf/201815006020.
  39. Lin, H., Cai, K., Chen, H., Zeng, Z., “The Construction of a Precise Agricultural Information System Based on Internet of Things”, Int. J. Online Eng., 2015, 11, 10, doi:10.3991/ijoe.v11i6.4847.
  40. Shashi Rekha, N., Kousar Nikhath, A., Nagini, S., Sagar, Y., Sukheja, D., “Sustainable and Portable Low Cost IOT Based Terrace Model to Grow True Organic Greens”, Int. J. Eng. Adv. Technol., 2019, 8, 3223–3228, doi:10.35940/ijeat.F8826.088619.
  41. Divya Vani, P., Raghavendra Rao, K., “Measurement and Monitoring of Soil Moisture using Cloud IoT and Android System”, Indian J. Sci. Technol., 2016, 9, doi:10.17485/ijst/2016/v9i31/95340.
  42. Ruan, F., Gu, R., Huang, T., Xue, S., “A big data placement method using NSGA-III in meteorological cloud platform”, Eurasip J. Wirel. Commun. Netw., 2019. doi:10.1186/s13638-019-1456-7.
  43. Potamitis, I., Eliopoulos, P., Rigakis, I., “Automated Remote Insect Surveillance at a Global Scale and the Internet of Things”, Robotics 2017, 6, 19, doi:10.3390/robotics6030019
  44. Jayaraman, P., Yavari, A., Georgakopoulos, D., Morshed, A., Zaslavsky, A., “Internet of Things Platform for Smart Farming: Experiences and Lessons Learnt. Sensors”, 2016, 16, 1884, doi:10.3390/s16111884.
  45. Watanabe, M., Nakamura, A., Kunii, A., Kusano, K., Futagawa, M., “Fabrication of Scalable Indoor Light Energy Harvester and Study for Agricultural IoT Applications”, J. Phys. Conf. Ser., 2015. doi:10.1088/1742-6596/660/1/012110.
  46. Cruz, F.R.G., Ballado, A.H., Alcala, A.K.A., Legaspi, A.K.S., Lozada, E.L., Portugal, V.L.P., “Wireless soil moisture detection with time drift compensation” In Proceedings of the AIP Conference Proceedings, Maharashtra, India, 5–6 July 2018.
  47. Figueroa, M., Pope, C., “Root System Water Consumption Pattern Identification on Time Series Data” ,Sensors, 2017,. doi:10.3390/s17061410.
  48. Lammie, C., Olsen, A., Carrick, T., Rahimi Azghadi, M., “Low-Power and High-Speed Deep FPGA Inference Engines for Weed Classification at the Edge”, IEEE Access, 2019. doi:10.1109/ACCESS.2019.2911709
  49. Reynolds, D., Ball, J., Bauer, A., Davey, R., Griffiths, S., Zhou, J., “CropSight: A scalable and open-source information management system for distributed plant phenotyping and IoT-based crop management”, .Gigascience, 2019, 8, 1–11, doi:10.1093/gigascience/giz009.
  50. Syafarinda, Y., Akhadin, F., Fitri, Z.E., Widiawan, B., Rosdiana, E., “The Precision Agriculture Based on Wireless Sensor Network with MQTT Protocol”, IOP Conf. Ser. Earth Environ. Sci. 2018. doi:10.1088/1755-1315/207/1/012059.
  51. Domínguez-Niño, J.M., Oliver-Manera, J., Girona, J., Casadesús, J., “Differential irrigation scheduling by an automated algorithm of water balance tuned by capacitance-type soil moisture sensors”, Agric. Water Manag., 2020. doi:10.1016/j.agwat.2019.105880.
  52. Azimi Mahmud, M.S., Buyamin, S., Mokji, M.M., Abidin, M.S.Z., “Internet of Things based Smart Environmental Monitoring for Mushroom Cultivation”, Indones. J. Electr. Eng. Comput. Sci., 2018, 10, 847, doi:10.11591/ijeecs.v10.i3.pp847-852
  53. Trilles, S., González-Pérez, A., Huerta, J., “A Comprehensive IoT Node Proposal Using Open Hardware. A Smart Farming Use Case to Monitor Vineyards”, Electronics, 2018. doi:10.3390/electronics7120419.
  54. Laktionov, I.S., Vovna, O.V., Bashkov, Y.O., Zori, A.A., Lebediev, V.A., “Improved Computer-oriented Method for Processing of Measurement Information on Greenhouse Microclimate” Int. J. Bioautomation, 2019, 23, 71–86, doi:10.7546/ijba.2019.23.1.71-86
  55. Idbella, M., Iadaresta, M., Gagliarde, G., Mennella, A., Mazzoleni, S., Bonanomi, G., “Agrilogger: A new wireless sensor for monitoring agrometeorological data in areas lacking communication networks”, Sensors, (Switzerland) 2020, 20, 1589, doi:10.3390/s20061589.
  56. Erazo-Rodas, M., Sandoval-Moreno, M., Muñoz-Romero, S., Huerta, M., Rivas-Lalaleo, D., Naranjo, C., Rojo-Álvarez, J., “Multiparametric Monitoring in Equatorian Tomato Greenhouses (I): Wireless Sensor Network Benchmarking”, Sensors, 2018. doi:10.3390/s18082555
  57. Zhang, W., He, Y., Liu, F., Miao, C., Sun, S., Liu, C., Jin, J., “Research on WSN Channel Fading Model and Experimental Analysis in Orchard Environment”, In IFIP Advances in Information and Communication Technology, Springer: Berlin/Heidelberg, Germany, 2012.
  58. Muzafarov, F., Eshmuradov, A., “Wireless sensor network based monitoring system for precision agriculture in Uzbekistan”, TELKOMNIKA Telecommun. Comput. Electron. Control, 2019. doi:10.12928/telkomnika.v17i3.11513.
  59. R. Sharama, J. U. Shankar and S. T. Rajan, "Effect of Number of Active Nodes and Inter-node Distance on the Performance of Wireless Sensor Networks," 2014 Fourth International Conference on Communication Systems and Network Technologies, Bhopal, 2014, pp. 69-73, doi: 10.1109/CSNT.2014.22.
  60. Lea, P., “Long-Range Communication Systems and Protocols (WAN)” In Internet of Things for Architects: Learn to Design, Implement and secure your IoT infrastructure, Packt Publishing: Birmingham, UK, 2018.
  61. Fernandez-Ahumada, L.M., Ramirez-Faz, J., Torres-Romero, M., Lopez-Luque, R., “Proposal for the Design of Monitoring and Operating Irrigation Networks Based on IoT, Cloud Computing and Free Hardware Technologies”, Sensors, 2019. doi:10.3390/s19102318.
  62. Miriam Carlos-Mancilla, Ernesto López-Mellado, Mario Siller, "Wireless Sensor Networks Formation: Approaches and Techniques", Journal of Sensors, 2016. https://doi.org/10.1155/2016/2081902
  63. Boonchieng, E., Chieochan, O., Saokaew, A., “Smart Farm: Applying the Use of NodeMCU, IOT, NETPIE and LINE API for a Lingzhi Mushroom Farm in Thailand”, IEICE Trans. Commun. 2018, 16–23, doi:10.1587/transcom.2017ITI0002.
  64. Liu, N., Cao, W., Zhu, Y., Zhang, J., Pang, F., Ni, J., “The Node Deployment of Intelligent Sensor Networks Based on the Spatial Difference of Farmland Soil”, Sensors, 2015. doi:10.3390/s151128314.
  65. Zhang, X., Zhang, J., Li, L., Zhang, Y., Yang, G., “Monitoring Citrus Soil Moisture and Nutrients Using an IoT Based System”, Sensors, 2017, 17, 447, doi:10.3390/s17030447.
  66. Lee, S., Jeong, Y., Son, S., Lee, B., “A Self-Predictable Crop Yield Platform (SCYP) Based On Crop Diseases Using Deep Learning”, Sustainability, 2019. doi:10.3390/su11133637
  67. Algarín, C.R., Cabarcas, J.C., Llanos, A.P., “Low-Cost Fuzzy Logic Control for Greenhouse Environments with Web Monitoring”, Electronics, 2017. doi:10.3390/electronics6040071.
  68. Adenugba, F., Misra, S., Maskeliunas, R., Damasevicius, R., Kazanavicius, E., “Smart irrigation system for environmental sustainability in Africa: An Internet of Everything (IoE) approach”, Math. Biosci. Eng., 2019. doi:10.3934/mbe.2019273.
Index Terms

Computer Science
Information Sciences

Keywords

IoT Ecosystem IoT Platform IoT Topology Sensor Devices Big Data Data Processing Technologies.